Abstract:Echocardiography is the most widely used cardiac imaging modality, capturing ultrasound video data to assess cardiac structure and function. Artificial intelligence (AI) in echocardiography has the potential to streamline manual tasks and improve reproducibility and precision. However, most echocardiography AI models are single-view, single-task systems that do not synthesize complementary information from multiple views captured during a full exam, and thus lead to limited performance and scope of applications. To address this problem, we introduce EchoPrime, a multi-view, view-informed, video-based vision-language foundation model trained on over 12 million video-report pairs. EchoPrime uses contrastive learning to train a unified embedding model for all standard views in a comprehensive echocardiogram study with representation of both rare and common diseases and diagnoses. EchoPrime then utilizes view-classification and a view-informed anatomic attention model to weight video-specific interpretations that accurately maps the relationship between echocardiographic views and anatomical structures. With retrieval-augmented interpretation, EchoPrime integrates information from all echocardiogram videos in a comprehensive study and performs holistic comprehensive clinical echocardiography interpretation. In datasets from two independent healthcare systems, EchoPrime achieves state-of-the art performance on 23 diverse benchmarks of cardiac form and function, surpassing the performance of both task-specific approaches and prior foundation models. Following rigorous clinical evaluation, EchoPrime can assist physicians in the automated preliminary assessment of comprehensive echocardiography.
Abstract:Sleep is a complex physiological process evaluated through various modalities recording electrical brain, cardiac, and respiratory activities. We curate a large polysomnography dataset from over 14,000 participants comprising over 100,000 hours of multi-modal sleep recordings. Leveraging this extensive dataset, we developed SleepFM, the first multi-modal foundation model for sleep analysis. We show that a novel leave-one-out approach for contrastive learning significantly improves downstream task performance compared to representations from standard pairwise contrastive learning. A logistic regression model trained on SleepFM's learned embeddings outperforms an end-to-end trained convolutional neural network (CNN) on sleep stage classification (macro AUROC 0.88 vs 0.72 and macro AUPRC 0.72 vs 0.48) and sleep disordered breathing detection (AUROC 0.85 vs 0.69 and AUPRC 0.77 vs 0.61). Notably, the learned embeddings achieve 48% top-1 average accuracy in retrieving the corresponding recording clips of other modalities from 90,000 candidates. This work demonstrates the value of holistic multi-modal sleep modeling to fully capture the richness of sleep recordings. SleepFM is open source and available at https://github.com/rthapa84/sleepfm-codebase.
Abstract:Deep learning has been shown to accurately assess 'hidden' phenotypes and predict biomarkers from medical imaging beyond traditional clinician interpretation of medical imaging. Given the black box nature of artificial intelligence (AI) models, caution should be exercised in applying models to healthcare as prediction tasks might be short-cut by differences in demographics across disease and patient populations. Using large echocardiography datasets from two healthcare systems, we test whether it is possible to predict age, race, and sex from cardiac ultrasound images using deep learning algorithms and assess the impact of varying confounding variables. We trained video-based convolutional neural networks to predict age, sex, and race. We found that deep learning models were able to identify age and sex, while unable to reliably predict race. Without considering confounding differences between categories, the AI model predicted sex with an AUC of 0.85 (95% CI 0.84 - 0.86), age with a mean absolute error of 9.12 years (95% CI 9.00 - 9.25), and race with AUCs ranging from 0.63 - 0.71. When predicting race, we show that tuning the proportion of a confounding variable (sex) in the training data significantly impacts model AUC (ranging from 0.57 to 0.84), while in training a sex prediction model, tuning a confounder (race) did not substantially change AUC (0.81 - 0.83). This suggests a significant proportion of the model's performance on predicting race could come from confounding features being detected by AI. Further work remains to identify the particular imaging features that associate with demographic information and to better understand the risks of demographic identification in medical AI as it pertains to potentially perpetuating bias and disparities.
Abstract:Single-cell RNA sequencing (scRNA-seq) has the potential to provide powerful, high-resolution signatures to inform disease prognosis and precision medicine. This paper takes an important first step towards this goal by developing an interpretable machine learning algorithm, CloudPred, to predict individuals' disease phenotypes from their scRNA-seq data. Predicting phenotype from scRNA-seq is challenging for standard machine learning methods -- the number of cells measured can vary by orders of magnitude across individuals and the cell populations are also highly heterogeneous. Typical analysis creates pseudo-bulk samples which are biased toward prior annotations and also lose the single cell resolution. CloudPred addresses these challenges via a novel end-to-end differentiable learning algorithm which is coupled with a biologically informed mixture of cell types model. CloudPred automatically infers the cell subpopulation that are salient for the phenotype without prior annotations. We developed a systematic simulation platform to evaluate the performance of CloudPred and several alternative methods we propose, and find that CloudPred outperforms the alternative methods across several settings. We further validated CloudPred on a real scRNA-seq dataset of 142 lupus patients and controls. CloudPred achieves AUROC of 0.98 while identifying a specific subpopulation of CD4 T cells whose presence is highly indicative of lupus. CloudPred is a powerful new framework to predict clinical phenotypes from scRNA-seq data and to identify relevant cells.
Abstract:Left ventricular hypertrophy (LVH) results from chronic remodeling caused by a broad range of systemic and cardiovascular disease including hypertension, aortic stenosis, hypertrophic cardiomyopathy, and cardiac amyloidosis. Early detection and characterization of LVH can significantly impact patient care but is limited by under-recognition of hypertrophy, measurement error and variability, and difficulty differentiating etiologies of LVH. To overcome this challenge, we present EchoNet-LVH - a deep learning workflow that automatically quantifies ventricular hypertrophy with precision equal to human experts and predicts etiology of LVH. Trained on 28,201 echocardiogram videos, our model accurately measures intraventricular wall thickness (mean absolute error [MAE] 1.4mm, 95% CI 1.2-1.5mm), left ventricular diameter (MAE 2.4mm, 95% CI 2.2-2.6mm), and posterior wall thickness (MAE 1.2mm, 95% CI 1.1-1.3mm) and classifies cardiac amyloidosis (area under the curve of 0.83) and hypertrophic cardiomyopathy (AUC 0.98) from other etiologies of LVH. In external datasets from independent domestic and international healthcare systems, EchoNet-LVH accurately quantified ventricular parameters (R2 of 0.96 and 0.90 respectively) and detected cardiac amyloidosis (AUC 0.79) and hypertrophic cardiomyopathy (AUC 0.89) on the domestic external validation site. Leveraging measurements across multiple heart beats, our model can more accurately identify subtle changes in LV geometry and its causal etiologies. Compared to human experts, EchoNet-LVH is fully automated, allowing for reproducible, precise measurements, and lays the foundation for precision diagnosis of cardiac hypertrophy. As a resource to promote further innovation, we also make publicly available a large dataset of 23,212 annotated echocardiogram videos.
Abstract:Prior work poses a diversity paradox for science. Diversity breeds scientific innovation, and yet, diverse individuals have less successful scientific careers. But if diversity is good for innovation, why is science not rewarding diversity? We answer this question by utilizing a near-population of ~1.03 million US doctoral recipients from 1980-2015 and their careers into publishing and faculty roles. The article uses text analysis and machine learning techniques to answer a series of questions: How can we detect scientific innovation? Does diversity breed innovation? And are the innovations of diverse individuals adopted and rewarded? Our analyses show that underrepresented groups produce higher rates of scientific novelty. However, their novel contributions are discounted: e.g., innovations by gender minorities are taken up by other scholars at lower rates than innovations by gender majorities, and innovations by gender and racial minorities result in fewer academic positions. This suggests an unfair system in which diverse individuals innovate, but their innovations are disproportionately ignored and fail to convert into career success at the same rate as majority groups. In sum, there may be an unwarranted reproduction of stratification in academic careers that discounts diversity's role in innovation and partly explains the underrepresentation of some groups in academia.
Abstract:In classification, the de facto method for aggregating individual losses is the average loss. When the actual metric of interest is 0-1 loss, it is common to minimize the average surrogate loss for some well-behaved (e.g. convex) surrogate. Recently, several other aggregate losses such as the maximal loss and average top-$k$ loss were proposed as alternative objectives to address shortcomings of the average loss. However, we identify common classification settings, e.g. the data is imbalanced, has too many easy or ambiguous examples, etc., when average, maximal and average top-$k$ all suffer from suboptimal decision boundaries, even on an infinitely large training set. To address this problem, we propose a new classification objective called the close-$k$ aggregate loss, where we adaptively minimize the loss for points close to the decision boundary. We provide theoretical guarantees for the 0-1 accuracy when we optimize close-$k$ aggregate loss. We also conduct systematic experiments across the PMLB and OpenML benchmark datasets. Close-$k$ achieves significant gains in 0-1 test accuracy, improvements of $\geq 2$% and $p<0.05$, in over 25% of the datasets compared to average, maximal and average top-$k$. In contrast, the previous aggregate losses outperformed close-$k$ in less than 2% of the datasets.
Abstract:A challenge in training discriminative models like neural networks is obtaining enough labeled training data. Recent approaches use generative models to combine weak supervision sources, like user-defined heuristics or knowledge bases, to label training data. Prior work has explored learning accuracies for these sources even without ground truth labels, but they assume that a single accuracy parameter is sufficient to model the behavior of these sources over the entire training set. In particular, they fail to model latent subsets in the training data in which the supervision sources perform differently than on average. We present Socratic learning, a paradigm that uses feedback from a corresponding discriminative model to automatically identify these subsets and augments the structure of the generative model accordingly. Experimentally, we show that without any ground truth labels, the augmented generative model reduces error by up to 56.06% for a relation extraction task compared to a state-of-the-art weak supervision technique that utilizes generative models.
Abstract:Curating labeled training data has become the primary bottleneck in machine learning. Recent frameworks address this bottleneck with generative models to synthesize labels at scale from weak supervision sources. The generative model's dependency structure directly affects the quality of the estimated labels, but selecting a structure automatically without any labeled data is a distinct challenge. We propose a structure estimation method that maximizes the $\ell_1$-regularized marginal pseudolikelihood of the observed data. Our analysis shows that the amount of unlabeled data required to identify the true structure scales sublinearly in the number of possible dependencies for a broad class of models. Simulations show that our method is 100$\times$ faster than a maximum likelihood approach and selects $1/4$ as many extraneous dependencies. We also show that our method provides an average of 1.5 F1 points of improvement over existing, user-developed information extraction applications on real-world data such as PubMed journal abstracts.
Abstract:Obtaining enough labeled data to robustly train complex discriminative models is a major bottleneck in the machine learning pipeline. A popular solution is combining multiple sources of weak supervision using generative models. The structure of these models affects training label quality, but is difficult to learn without any ground truth labels. We instead rely on these weak supervision sources having some structure by virtue of being encoded programmatically. We present Coral, a paradigm that infers generative model structure by statically analyzing the code for these heuristics, thus reducing the data required to learn structure significantly. We prove that Coral's sample complexity scales quasilinearly with the number of heuristics and number of relations found, improving over the standard sample complexity, which is exponential in $n$ for identifying $n^{\textrm{th}}$ degree relations. Experimentally, Coral matches or outperforms traditional structure learning approaches by up to 3.81 F1 points. Using Coral to model dependencies instead of assuming independence results in better performance than a fully supervised model by 3.07 accuracy points when heuristics are used to label radiology data without ground truth labels.