Abstract:Recent advances in Vision-Language Models (VLMs) and the scarcity of high-quality multi-modal alignment data have inspired numerous researches on synthetic VLM data generation. The conventional norm in VLM data construction uses a mixture of specialists in caption and OCR, or stronger VLM APIs and expensive human annotation. In this paper, we present World to Code (W2C), a meticulously curated multi-modal data construction pipeline that organizes the final generation output into a Python code format. The pipeline leverages the VLM itself to extract cross-modal information via different prompts and filter the generated outputs again via a consistency filtering strategy. Experiments have demonstrated the high quality of W2C by improving various existing visual question answering and visual grounding benchmarks across different VLMs. Further analysis also demonstrates that the new code parsing ability of VLMs presents better cross-modal equivalence than the commonly used detail caption ability. Our code is available at https://github.com/foundation-multimodal-models/World2Code.
Abstract:Image captioning has long been regarded as a fundamental task in visual understanding. Recently, however, few large vision-language model (LVLM) research discusses model's image captioning performance because of the outdated short-caption benchmarks and unreliable evaluation metrics. In this work, we propose to benchmark detail image caption task by curating high-quality evaluation datasets annotated by human experts, GPT-4V and Gemini-1.5-Pro. We also design a more reliable caption evaluation metric called CAPTURE (CAPtion evaluation by exTracting and coUpling coRE information). CAPTURE extracts visual elements, e.g., objects, attributes and relations from captions, and then matches these elements through three stages, achieving the highest consistency with expert judgements over other rule-based or model-based caption metrics. The proposed benchmark and metric provide reliable evaluation for LVLM's detailed image captioning ability. Guided by this evaluation, we further explore to unleash LVLM's detail caption capabilities by synthesizing high-quality data through a five-stage data construction pipeline. Our pipeline only uses a given LVLM itself and other open-source tools, without any human or GPT-4V annotation in the loop. Experiments show that the proposed data construction strategy significantly improves model-generated detail caption data quality for LVLMs with leading performance, and the data quality can be further improved in a self-looping paradigm. All code and dataset will be publicly available at https://github.com/foundation-multimodal-models/CAPTURE.
Abstract:Existing image-text modality alignment in Vision Language Models (VLMs) treats each text token equally in an autoregressive manner. Despite being simple and effective, this method results in sub-optimal cross-modal alignment by over-emphasizing the text tokens that are less correlated with or even contradictory with the input images. In this paper, we advocate for assigning distinct contributions for each text token based on its visual correlation. Specifically, we present by contrasting image inputs, the difference in prediction logits on each text token provides strong guidance of visual correlation. We therefore introduce Contrastive ALignment (CAL), a simple yet effective re-weighting strategy that prioritizes training visually correlated tokens. Our experimental results demonstrate that CAL consistently improves different types of VLMs across different resolutions and model sizes on various benchmark datasets. Importantly, our method incurs minimal additional computational overhead, rendering it highly efficient compared to alternative data scaling strategies. Codes are available at https://github.com/foundation-multimodal-models/CAL.
Abstract:Multilingual understanding models (or encoder-based), pre-trained via masked language modeling, have achieved promising results on many language understanding tasks (e.g., mBERT). However, these non-autoregressive (NAR) models still struggle to generate high-quality texts compared with autoregressive (AR) models. Considering that encoder-based models have the advantage of efficient generation and self-correction abilities, this paper explores methods to empower multilingual understanding models the generation abilities to get a unified model. Specifically, we start from a multilingual encoder (XLM-R) and propose a \textbf{S}emantic-\textbf{G}uided \textbf{A}lignment-then-Denoising (SGA) approach to adapt an encoder to a multilingual generator with a small number of new parameters. Experiments show that the proposed approach is an effective adaption method, outperforming widely-used initialization-based methods with gains of 9.4 BLEU on machine translation, 8.1 Rouge-L on question generation, and 5.5 METEOR on story generation on XLM-R$_{large}$. On the other hand, we observe that XLM-R is still inferior to mBART in supervised settings despite better results on zero-shot settings, indicating that more exploration is required to make understanding models strong generators.
Abstract:Though offering amazing contextualized token-level representations, current pre-trained language models take less attention on accurately acquiring sentence-level representation during their self-supervised pre-training. However, contrastive objectives which dominate the current sentence representation learning bring little linguistic interpretability and no performance guarantee on downstream semantic tasks. We instead propose a novel generative self-supervised learning objective based on phrase reconstruction. To overcome the drawbacks of previous generative methods, we carefully model intra-sentence structure by breaking down one sentence into pieces of important phrases. Empirical studies show that our generative learning achieves powerful enough performance improvement and outperforms the current state-of-the-art contrastive methods not only on the STS benchmarks, but also on downstream semantic retrieval and reranking tasks. Our code is available at https://github.com/chengzhipanpan/PaSeR.
Abstract:Though offering amazing contextualized token-level representations, current pre-trained language models actually take less attention on acquiring sentence-level representation during its self-supervised pre-training. If self-supervised learning can be distinguished into two subcategories, generative and contrastive, then most existing studies show that sentence representation learning may more benefit from the contrastive methods but not the generative methods. However, contrastive learning cannot be well compatible with the common token-level generative self-supervised learning, and does not guarantee good performance on downstream semantic retrieval tasks. Thus, to alleviate such obvious inconveniences, we instead propose a novel generative self-supervised learning objective based on phrase reconstruction. Empirical studies show that our generative learning may yield powerful enough sentence representation and achieve performance in Sentence Textual Similarity (STS) tasks on par with contrastive learning. Further, in terms of unsupervised setting, our generative method outperforms previous state-of-the-art SimCSE on the benchmark of downstream semantic retrieval tasks.
Abstract:Training dense passage representations via contrastive learning (CL) has been shown effective for Open-Domain Passage Retrieval (ODPR). Recent studies mainly focus on optimizing this CL framework by improving the sampling strategy or extra pretraining. Different from previous studies, this work devotes itself to investigating the influence of conflicts in the widely used CL strategy in ODPR, motivated by our observation that a passage can be organized by multiple semantically different sentences, thus modeling such a passage as a unified dense vector is not optimal. We call such conflicts Contrastive Conflicts. In this work, we propose to solve it with a representation decoupling method, by decoupling the passage representations into contextual sentence-level ones, and design specific CL strategies to mediate these conflicts. Experiments on widely used datasets including Natural Questions, Trivia QA, and SQuAD verify the effectiveness of our method, especially on the dataset where the conflicting problem is severe. Our method also presents good transferability across the datasets, which further supports our idea of mediating Contrastive Conflicts.
Abstract:Multi-hop reading comprehension (MHRC) requires not only to predict the correct answer span in the given passage, but also to provide a chain of supporting evidences for reasoning interpretability. It is natural to model such a process into graph structure by understanding multi-hop reasoning as jumping over entity nodes, which has made graph modelling dominant on this task. Recently, there have been dissenting voices about whether graph modelling is indispensable due to the inconvenience of the graph building, however existing state-of-the-art graph-free attempts suffer from huge performance gap compared to graph-based ones. This work presents a novel graph-free alternative which firstly outperform all graph models on MHRC. In detail, we exploit a select-to-guide (S2G) strategy to accurately retrieve evidence paragraphs in a coarse-to-fine manner, incorporated with two novel attention mechanisms, which surprisingly shows conforming to the nature of multi-hop reasoning. Our graph-free model achieves significant and consistent performance gain over strong baselines and the current new state-of-the-art on the MHRC benchmark, HotpotQA, among all the published works.