Abstract:Domain-specific languages that use a lot of specific terminology often fall into the category of low-resource languages. Collecting test datasets in a narrow domain is time-consuming and requires skilled human resources with domain knowledge and training for the annotation task. This study addresses the challenge of automated collecting test datasets to evaluate semantic search in low-resource domain-specific German language of the process industry. Our approach proposes an end-to-end annotation pipeline for automated query generation to the score reassessment of query-document pairs. To overcome the lack of text encoders trained in the German chemistry domain, we explore a principle of an ensemble of "weak" text encoders trained on common knowledge datasets. We combine individual relevance scores from diverse models to retrieve document candidates and relevance scores generated by an LLM, aiming to achieve consensus on query-document alignment. Evaluation results demonstrate that the ensemble method significantly improves alignment with human-assigned relevance scores, outperforming individual models in both inter-coder agreement and accuracy metrics. These findings suggest that ensemble learning can effectively adapt semantic search systems for specialized, low-resource languages, offering a practical solution to resource limitations in domain-specific contexts.
Abstract:The quality of meeting summaries generated by natural language generation (NLG) systems is hard to measure automatically. Established metrics such as ROUGE and BERTScore have a relatively low correlation with human judgments and fail to capture nuanced errors. Recent studies suggest using large language models (LLMs), which have the benefit of better context understanding and adaption of error definitions without training on a large number of human preference judgments. However, current LLM-based evaluators risk masking errors and can only serve as a weak proxy, leaving human evaluation the gold standard despite being costly and hard to compare across studies. In this work, we present MESA, an LLM-based framework employing a three-step assessment of individual error types, multi-agent discussion for decision refinement, and feedback-based self-training to refine error definition understanding and alignment with human judgment. We show that MESA's components enable thorough error detection, consistent rating, and adaptability to custom error guidelines. Using GPT-4o as its backbone, MESA achieves mid to high Point-Biserial correlation with human judgment in error detection and mid Spearman and Kendall correlation in reflecting error impact on summary quality, on average 0.25 higher than previous methods. The framework's flexibility in adapting to custom error guidelines makes it suitable for various tasks with limited human-labeled data.
Abstract:High annotation costs from hiring or crowdsourcing complicate the creation of large, high-quality datasets needed for training reliable text classifiers. Recent research suggests using Large Language Models (LLMs) to automate the annotation process, reducing these costs while maintaining data quality. LLMs have shown promising results in annotating downstream tasks like hate speech detection and political framing. Building on the success in these areas, this study investigates whether LLMs are viable for annotating the complex task of media bias detection and whether a downstream media bias classifier can be trained on such data. We create annolexical, the first large-scale dataset for media bias classification with over 48000 synthetically annotated examples. Our classifier, fine-tuned on this dataset, surpasses all of the annotator LLMs by 5-9 percent in Matthews Correlation Coefficient (MCC) and performs close to or outperforms the model trained on human-labeled data when evaluated on two media bias benchmark datasets (BABE and BASIL). This study demonstrates how our approach significantly reduces the cost of dataset creation in the media bias domain and, by extension, the development of classifiers, while our subsequent behavioral stress-testing reveals some of its current limitations and trade-offs.
Abstract:Meeting summarization is crucial in digital communication, but existing solutions struggle with salience identification to generate personalized, workable summaries, and context understanding to fully comprehend the meetings' content. Previous attempts to address these issues by considering related supplementary resources (e.g., presentation slides) alongside transcripts are hindered by models' limited context sizes and handling the additional complexities of the multi-source tasks, such as identifying relevant information in additional files and seamlessly aligning it with the meeting content. This work explores multi-source meeting summarization considering supplementary materials through a three-stage large language model approach: identifying transcript passages needing additional context, inferring relevant details from supplementary materials and inserting them into the transcript, and generating a summary from this enriched transcript. Our multi-source approach enhances model understanding, increasing summary relevance by ~9% and producing more content-rich outputs. We introduce a personalization protocol that extracts participant characteristics and tailors summaries accordingly, improving informativeness by ~10%. This work further provides insights on performance-cost trade-offs across four leading model families, including edge-device capable options. Our approach can be extended to similar complex generative tasks benefitting from additional resources and personalization, such as dialogue systems and action planning.
Abstract:Meeting summarization has become a critical task since digital encounters have become a common practice. Large language models (LLMs) show great potential in summarization, offering enhanced coherence and context understanding compared to traditional methods. However, they still struggle to maintain relevance and avoid hallucination. We introduce a multi-LLM correction approach for meeting summarization using a two-phase process that mimics the human review process: mistake identification and summary refinement. We release QMSum Mistake, a dataset of 200 automatically generated meeting summaries annotated by humans on nine error types, including structural, omission, and irrelevance errors. Our experiments show that these errors can be identified with high accuracy by an LLM. We transform identified mistakes into actionable feedback to improve the quality of a given summary measured by relevance, informativeness, conciseness, and coherence. This post-hoc refinement effectively improves summary quality by leveraging multiple LLMs to validate output quality. Our multi-LLM approach for meeting summarization shows potential for similar complex text generation tasks requiring robustness, action planning, and discussion towards a goal.
Abstract:We present CiteAssist, a system to automate the generation of BibTeX entries for preprints, streamlining the process of bibliographic annotation. Our system extracts metadata, such as author names, titles, publication dates, and keywords, to create standardized annotations within the document. CiteAssist automatically attaches the BibTeX citation to the end of a PDF and links it on the first page of the document so other researchers gain immediate access to the correct citation of the article. This method promotes platform flexibility by ensuring that annotations remain accessible regardless of the repository used to publish or access the preprint. The annotations remain available even if the preprint is viewed externally to CiteAssist. Additionally, the system adds relevant related papers based on extracted keywords to the preprint, providing researchers with additional publications besides those in related work for further reading. Researchers can enhance their preprints organization and reference management workflows through a free and publicly available web interface.
Abstract:Paraphrases represent a human's intuitive ability to understand expressions presented in various different ways. Current paraphrase evaluations of language models primarily use binary approaches, offering limited interpretability of specific text changes. Atomic paraphrase types (APT) decompose paraphrases into different linguistic changes and offer a granular view of the flexibility in linguistic expression (e.g., a shift in syntax or vocabulary used). In this study, we assess the human preferences towards ChatGPT in generating English paraphrases with ten APTs and five prompting techniques. We introduce APTY (Atomic Paraphrase TYpes), a dataset of 500 sentence-level and word-level annotations by 15 annotators. The dataset also provides a human preference ranking of paraphrases with different types that can be used to fine-tune models with RLHF and DPO methods. Our results reveal that ChatGPT can generate simple APTs, such as additions and deletions, but struggle with complex structures (e.g., subordination changes). This study contributes to understanding which aspects of paraphrasing language models have already succeeded at understanding and what remains elusive. In addition, our curated datasets can be used to develop language models with specific linguistic capabilities.
Abstract:Much of the success of modern language models depends on finding a suitable prompt to instruct the model. Until now, it has been largely unknown how variations in the linguistic expression of prompts affect these models. This study systematically and empirically evaluates which linguistic features influence models through paraphrase types, i.e., different linguistic changes at particular positions. We measure behavioral changes for five models across 120 tasks and six families of paraphrases (i.e., morphology, syntax, lexicon, lexico-syntax, discourse, and others). We also control for other prompt engineering factors (e.g., prompt length, lexical diversity, and proximity to training data). Our results show a potential for language models to improve tasks when their prompts are adapted in specific paraphrase types (e.g., 6.7% median gain in Mixtral 8x7B; 5.5% in LLaMA 3 8B). In particular, changes in morphology and lexicon, i.e., the vocabulary used, showed promise in improving prompts. These findings contribute to developing more robust language models capable of handling variability in linguistic expression.
Abstract:Abstractive dialogue summarization is the task of distilling conversations into informative and concise summaries. Although reviews have been conducted on this topic, there is a lack of comprehensive work detailing the challenges of dialogue summarization, unifying the differing understanding of the task, and aligning proposed techniques, datasets, and evaluation metrics with the challenges. This article summarizes the research on Transformer-based abstractive summarization for English dialogues by systematically reviewing 1262 unique research papers published between 2019 and 2024, relying on the Semantic Scholar and DBLP databases. We cover the main challenges present in dialog summarization (i.e., language, structure, comprehension, speaker, salience, and factuality) and link them to corresponding techniques such as graph-based approaches, additional training tasks, and planning strategies, which typically overly rely on BART-based encoder-decoder models. We find that while some challenges, like language, have seen considerable progress, mainly due to training methods, others, such as comprehension, factuality, and salience, remain difficult and hold significant research opportunities. We investigate how these approaches are typically assessed, covering the datasets for the subdomains of dialogue (e.g., meeting, medical), the established automatic metrics and human evaluation approaches for assessing scores and annotator agreement. We observe that only a few datasets span across all subdomains. The ROUGE metric is the most used, while human evaluation is frequently reported without sufficient detail on inner-annotator agreement and annotation guidelines. Additionally, we discuss the possible implications of the recently explored large language models and conclude that despite a potential shift in relevance and difficulty, our described challenge taxonomy remains relevant.
Abstract:Text generation has become more accessible than ever, and the increasing interest in these systems, especially those using large language models, has spurred an increasing number of related publications. We provide a systematic literature review comprising 244 selected papers between 2017 and 2024. This review categorizes works in text generation into five main tasks: open-ended text generation, summarization, translation, paraphrasing, and question answering. For each task, we review their relevant characteristics, sub-tasks, and specific challenges (e.g., missing datasets for multi-document summarization, coherence in story generation, and complex reasoning for question answering). Additionally, we assess current approaches for evaluating text generation systems and ascertain problems with current metrics. Our investigation shows nine prominent challenges common to all tasks and sub-tasks in recent text generation publications: bias, reasoning, hallucinations, misuse, privacy, interpretability, transparency, datasets, and computing. We provide a detailed analysis of these challenges, their potential solutions, and which gaps still require further engagement from the community. This systematic literature review targets two main audiences: early career researchers in natural language processing looking for an overview of the field and promising research directions, as well as experienced researchers seeking a detailed view of tasks, evaluation methodologies, open challenges, and recent mitigation strategies.