Abstract:This literature review gives an overview of current approaches to perform domain adaptation in a low-resource and approaches to perform multilingual semantic search in a low-resource setting. We developed a new typology to cluster domain adaptation approaches based on the part of dense textual information retrieval systems, which they adapt, focusing on how to combine them efficiently. We also explore the possibilities of combining multilingual semantic search with domain adaptation approaches for dense retrievers in a low-resource setting.
Abstract:User experience (UX) is a part of human-computer interaction (HCI) research and focuses on increasing intuitiveness, transparency, simplicity, and trust for system users. Most of the UX research for machine learning (ML) or natural language processing (NLP) focuses on a data-driven methodology, i.e., it fails to focus on users' requirements, and engages domain users mainly for usability evaluation. Moreover, more typical UX methods tailor the systems towards user usability, unlike learning about the user needs first. The paper proposes a methodology for integrating generative UX research into developing domain NLP applications. Generative UX research employs domain users at the initial stages of prototype development, i.e., ideation and concept evaluation, and the last stage for evaluating the change in user value. In the case study, we report the full-cycle prototype development of a domain-specific semantic search for daily operations in the process industry. Our case study shows that involving domain experts increases their interest and trust in the final NLP application. Moreover, we show that synergetic UX+NLP research efficiently considers data- and user-driven opportunities and constraints, which can be crucial for NLP applications in narrow domains
Abstract:Named entity recognition (NER) is an important task that aims to resolve universal categories of named entities, e.g., persons, locations, organizations, and times. Despite its common and viable use in many use cases, NER is barely applicable in domains where general categories are suboptimal, such as engineering or medicine. To facilitate NER of domain-specific types, we propose ANEA, an automated (named) entity annotator to assist human annotators in creating domain-specific NER corpora for German text collections when given a set of domain-specific texts. In our evaluation, we find that ANEA automatically identifies terms that best represent the texts' content, identifies groups of coherent terms, and extracts and assigns descriptive labels to these groups, i.e., annotates text datasets into the domain (named) entities.
Abstract:Media bias and its extreme form, fake news, can decisively affect public opinion. Especially when reporting on policy issues, slanted news coverage may strongly influence societal decisions, e.g., in democratic elections. Our paper makes three contributions to address this issue. First, we present a system for bias identification, which combines state-of-the-art methods from natural language understanding. Second, we devise bias-sensitive visualizations to communicate bias in news articles to non-expert news consumers. Third, our main contribution is a large-scale user study that measures bias-awareness in a setting that approximates daily news consumption, e.g., we present respondents with a news overview and individual articles. We not only measure the visualizations' effect on respondents' bias-awareness, but we can also pinpoint the effects on individual components of the visualizations by employing a conjoint design. Our bias-sensitive overviews strongly and significantly increase bias-awareness in respondents. Our study further suggests that our content-driven identification method detects groups of similarly slanted news articles due to substantial biases present in individual news articles. In contrast, the reviewed prior work rather only facilitates the visibility of biases, e.g., by distinguishing left- and right-wing outlets.
Abstract:Datasets and methods for cross-document coreference resolution (CDCR) focus on events or entities with strict coreference relations. They lack, however, annotating and resolving coreference mentions with more abstract or loose relations that may occur when news articles report about controversial and polarized events. Bridging and loose coreference relations trigger associations that may lead to exposing news readers to bias by word choice and labeling. For example, coreferential mentions of "direct talks between U.S. President Donald Trump and Kim" such as "an extraordinary meeting following months of heated rhetoric" or "great chance to solve a world problem" form a more positive perception of this event. A step towards bringing awareness of bias by word choice and labeling is the reliable resolution of coreferences with high lexical diversity. We propose an unsupervised method named XCoref, which is a CDCR method that capably resolves not only previously prevalent entities, such as persons, e.g., "Donald Trump," but also abstractly defined concepts, such as groups of persons, "caravan of immigrants," events and actions, e.g., "marching to the U.S. border." In an extensive evaluation, we compare the proposed XCoref to a state-of-the-art CDCR method and a previous method TCA that resolves such complex coreference relations and find that XCoref outperforms these methods. Outperforming an established CDCR model shows that the new CDCR models need to be evaluated on semantically complex mentions with more loose coreference relations to indicate their applicability of models to resolve mentions in the "wild" of political news articles.
Abstract:Cross-document coreference resolution (CDCR) datasets, such as ECB+, contain manually annotated event-centric mentions of events and entities that form coreference chains with identity relations. ECB+ is a state-of-the-art CDCR dataset that focuses on the resolution of events and their descriptive attributes, i.e., actors, location, and date-time. NewsWCL50 is a dataset that annotates coreference chains of both events and entities with a strong variance of word choice and more loosely-related coreference anaphora, e.g., bridging or near-identity relations. In this paper, we qualitatively and quantitatively compare annotation schemes of ECB+ and NewsWCL50 with multiple criteria. We propose a phrasing diversity metric (PD) that compares lexical diversity within coreference chains on a more detailed level than previously proposed metric, e.g., a number of unique lemmas. We discuss the different tasks that both CDCR datasets create, i.e., lexical disambiguation and lexical diversity challenges, and propose a direction for further CDCR evaluation.
Abstract:Unsupervised concept identification through clustering, i.e., identification of semantically related words and phrases, is a common approach to identify contextual primitives employed in various use cases, e.g., text dimension reduction, i.e., replace words with the concepts to reduce the vocabulary size, summarization, and named entity resolution. We demonstrate the first results of an unsupervised approach for the identification of groups of persons as actors extracted from a set of related articles. Specifically, the approach clusters mentions of groups of persons that act as non-named entity actors in the texts, e.g., "migrant families" = "asylum-seekers." Compared to our baseline, the approach keeps the mentions of the geopolitical entities separated, e.g., "Iran leaders" != "European leaders," and clusters (in)directly related mentions with diverse wording, e.g., "American officials" = "Trump Administration."