Abstract:Large transformer-based models have significant potential for speech transcription and translation. Their self-attention mechanisms and parallel processing enable them to capture complex patterns and dependencies in audio sequences. However, this potential comes with challenges, as these large and computationally intensive models lead to slow inference speeds. Various optimization strategies have been proposed to improve performance, including efficient hardware utilization and algorithmic enhancements. In this paper, we introduce Whisper-Medusa, a novel approach designed to enhance processing speed with minimal impact on Word Error Rate (WER). The proposed model extends the OpenAI's Whisper architecture by predicting multiple tokens per iteration, resulting in a 50% reduction in latency. We showcase the effectiveness of Whisper-Medusa across different learning setups and datasets.
Abstract:Integrating named entity recognition (NER) with automatic speech recognition (ASR) can significantly enhance transcription accuracy and informativeness. In this paper, we introduce WhisperNER, a novel model that allows joint speech transcription and entity recognition. WhisperNER supports open-type NER, enabling recognition of diverse and evolving entities at inference. Building on recent advancements in open NER research, we augment a large synthetic dataset with synthetic speech samples. This allows us to train WhisperNER on a large number of examples with diverse NER tags. During training, the model is prompted with NER labels and optimized to output the transcribed utterance along with the corresponding tagged entities. To evaluate WhisperNER, we generate synthetic speech for commonly used NER benchmarks and annotate existing ASR datasets with open NER tags. Our experiments demonstrate that WhisperNER outperforms natural baselines on both out-of-domain open type NER and supervised finetuning.
Abstract:Automatic Speech Recognition (ASR) technology has made significant progress in recent years, providing accurate transcription across various domains. However, some challenges remain, especially in noisy environments and specialized jargon. In this paper, we propose a novel approach for improved jargon word recognition by contextual biasing Whisper-based models. We employ a keyword spotting model that leverages the Whisper encoder representation to dynamically generate prompts for guiding the decoder during the transcription process. We introduce two approaches to effectively steer the decoder towards these prompts: KG-Whisper, which is aimed at fine-tuning the Whisper decoder, and KG-Whisper-PT, which learns a prompt prefix. Our results show a significant improvement in the recognition accuracy of specified keywords and in reducing the overall word error rates. Specifically, in unseen language generalization, we demonstrate an average WER improvement of 5.1% over Whisper.
Abstract:One of the challenges in applying reinforcement learning in a complex real-world environment lies in providing the agent with a sufficiently detailed reward function. Any misalignment between the reward and the desired behavior can result in unwanted outcomes. This may lead to issues like "reward hacking" where the agent maximizes rewards by unintended behavior. In this work, we propose to disentangle the reward into two distinct parts. A simple task-specific reward, outlining the particulars of the task at hand, and an unknown common-sense reward, indicating the expected behavior of the agent within the environment. We then explore how this common-sense reward can be learned from expert demonstrations. We first show that inverse reinforcement learning, even when it succeeds in training an agent, does not learn a useful reward function. That is, training a new agent with the learned reward does not impair the desired behaviors. We then demonstrate that this problem can be solved by training simultaneously on multiple tasks. That is, multi-task inverse reinforcement learning can be applied to learn a useful reward function.
Abstract:Learning in deep weight spaces (DWS), where neural networks process the weights of other neural networks, is an emerging research direction, with applications to 2D and 3D neural fields (INRs, NeRFs), as well as making inferences about other types of neural networks. Unfortunately, weight space models tend to suffer from substantial overfitting. We empirically analyze the reasons for this overfitting and find that a key reason is the lack of diversity in DWS datasets. While a given object can be represented by many different weight configurations, typical INR training sets fail to capture variability across INRs that represent the same object. To address this, we explore strategies for data augmentation in weight spaces and propose a MixUp method adapted for weight spaces. We demonstrate the effectiveness of these methods in two setups. In classification, they improve performance similarly to having up to 10 times more data. In self-supervised contrastive learning, they yield substantial 5-10% gains in downstream classification.
Abstract:Learning in weight spaces, where neural networks process the weights of other deep neural networks, has emerged as a promising research direction with applications in various fields, from analyzing and editing neural fields and implicit neural representations, to network pruning and quantization. Recent works designed architectures for effective learning in that space, which takes into account its unique, permutation-equivariant, structure. Unfortunately, so far these architectures suffer from severe overfitting and were shown to benefit from large datasets. This poses a significant challenge because generating data for this learning setup is laborious and time-consuming since each data sample is a full set of network weights that has to be trained. In this paper, we address this difficulty by investigating data augmentations for weight spaces, a set of techniques that enable generating new data examples on the fly without having to train additional input weight space elements. We first review several recently proposed data augmentation schemes %that were proposed recently and divide them into categories. We then introduce a novel augmentation scheme based on the Mixup method. We evaluate the performance of these techniques on existing benchmarks as well as new benchmarks we generate, which can be valuable for future studies.
Abstract:General purpose language models (LMs) encounter difficulties when processing domain-specific jargon and terminology, which are frequently utilized in specialized fields such as medicine or industrial settings. Moreover, they often find it challenging to interpret mixed speech that blends general language with specialized jargon. This poses a challenge for automatic speech recognition systems operating within these specific domains. In this work, we introduce a novel approach that integrates domain-specific or secondary LM into general-purpose LM. This strategy involves labeling, or "coloring", each word to indicate its association with either the general or the domain-specific LM. We develop an optimized algorithm that enhances the beam search algorithm to effectively handle inferences involving colored words. Our evaluations indicate that this approach is highly effective in integrating jargon into language tasks. Notably, our method substantially lowers the error rate for domain-specific words without compromising performance in the general domain.
Abstract:Permutation symmetries of deep networks make simple operations like model averaging and similarity estimation challenging. In many cases, aligning the weights of the networks, i.e., finding optimal permutations between their weights, is necessary. More generally, weight alignment is essential for a wide range of applications, from model merging, through exploring the optimization landscape of deep neural networks, to defining meaningful distance functions between neural networks. Unfortunately, weight alignment is an NP-hard problem. Prior research has mainly focused on solving relaxed versions of the alignment problem, leading to either time-consuming methods or sub-optimal solutions. To accelerate the alignment process and improve its quality, we propose a novel framework aimed at learning to solve the weight alignment problem, which we name Deep-Align. To that end, we first demonstrate that weight alignment adheres to two fundamental symmetries and then, propose a deep architecture that respects these symmetries. Notably, our framework does not require any labeled data. We provide a theoretical analysis of our approach and evaluate Deep-Align on several types of network architectures and learning setups. Our experimental results indicate that a feed-forward pass with Deep-Align produces better or equivalent alignments compared to those produced by current optimization algorithms. Additionally, our alignments can be used as an initialization for other methods to gain even better solutions with a significant speedup in convergence.
Abstract:Open vocabulary keyword spotting is a crucial and challenging task in automatic speech recognition (ASR) that focuses on detecting user-defined keywords within a spoken utterance. Keyword spotting methods commonly map the audio utterance and keyword into a joint embedding space to obtain some affinity score. In this work, we propose AdaKWS, a novel method for keyword spotting in which a text encoder is trained to output keyword-conditioned normalization parameters. These parameters are used to process the auditory input. We provide an extensive evaluation using challenging and diverse multi-lingual benchmarks and show significant improvements over recent keyword spotting and ASR baselines. Furthermore, we study the effectiveness of our approach on low-resource languages that were unseen during the training. The results demonstrate a substantial performance improvement compared to baseline methods.
Abstract:In computer vision and machine learning, a crucial challenge is to lower the computation and memory demands for neural network inference. A commonplace solution to address this challenge is through the use of binarization. By binarizing the network weights and activations, one can significantly reduce computational complexity by substituting the computationally expensive floating operations with faster bitwise operations. This leads to a more efficient neural network inference that can be deployed on low-resource devices. In this work, we extend previous approaches that trained networks with discrete weights using the local reparameterization trick to also allow for discrete activations. The original approach optimized a distribution over the discrete weights and uses the central limit theorem to approximate the pre-activation with a continuous Gaussian distribution. Here we show that the probabilistic modeling can also allow effective training of networks with discrete activation as well. This further reduces runtime and memory footprint at inference time with state-of-the-art results for networks with binary activations.