Abstract:Integrating named entity recognition (NER) with automatic speech recognition (ASR) can significantly enhance transcription accuracy and informativeness. In this paper, we introduce WhisperNER, a novel model that allows joint speech transcription and entity recognition. WhisperNER supports open-type NER, enabling recognition of diverse and evolving entities at inference. Building on recent advancements in open NER research, we augment a large synthetic dataset with synthetic speech samples. This allows us to train WhisperNER on a large number of examples with diverse NER tags. During training, the model is prompted with NER labels and optimized to output the transcribed utterance along with the corresponding tagged entities. To evaluate WhisperNER, we generate synthetic speech for commonly used NER benchmarks and annotate existing ASR datasets with open NER tags. Our experiments demonstrate that WhisperNER outperforms natural baselines on both out-of-domain open type NER and supervised finetuning.
Abstract:General purpose language models (LMs) encounter difficulties when processing domain-specific jargon and terminology, which are frequently utilized in specialized fields such as medicine or industrial settings. Moreover, they often find it challenging to interpret mixed speech that blends general language with specialized jargon. This poses a challenge for automatic speech recognition systems operating within these specific domains. In this work, we introduce a novel approach that integrates domain-specific or secondary LM into general-purpose LM. This strategy involves labeling, or "coloring", each word to indicate its association with either the general or the domain-specific LM. We develop an optimized algorithm that enhances the beam search algorithm to effectively handle inferences involving colored words. Our evaluations indicate that this approach is highly effective in integrating jargon into language tasks. Notably, our method substantially lowers the error rate for domain-specific words without compromising performance in the general domain.