Abstract:Multi-participant discussions tend to unfold in a tree structure rather than a chain structure. Branching may occur for multiple reasons -- from the asynchronous nature of online platforms to a conscious decision by an interlocutor to disengage with part of the conversation. Predicting branching and understanding the reasons for creating new branches is important for many downstream tasks such as summarization and thread disentanglement and may help develop online spaces that encourage users to engage in online discussions in more meaningful ways. In this work, we define the novel task of branch prediction and propose GLOBS (Global Branching Score) -- a deep neural network model for predicting branching. GLOBS is evaluated on three large discussion forums from Reddit, achieving significant improvements over an array of competitive baselines and demonstrating better transferability. We affirm that structural, temporal, and linguistic features contribute to GLOBS success and find that branching is associated with a greater number of conversation participants and tends to occur in earlier levels of the conversation tree. We publicly release GLOBS and our implementation of all baseline models to allow reproducibility and promote further research on this important task.
Abstract:General purpose language models (LMs) encounter difficulties when processing domain-specific jargon and terminology, which are frequently utilized in specialized fields such as medicine or industrial settings. Moreover, they often find it challenging to interpret mixed speech that blends general language with specialized jargon. This poses a challenge for automatic speech recognition systems operating within these specific domains. In this work, we introduce a novel approach that integrates domain-specific or secondary LM into general-purpose LM. This strategy involves labeling, or "coloring", each word to indicate its association with either the general or the domain-specific LM. We develop an optimized algorithm that enhances the beam search algorithm to effectively handle inferences involving colored words. Our evaluations indicate that this approach is highly effective in integrating jargon into language tasks. Notably, our method substantially lowers the error rate for domain-specific words without compromising performance in the general domain.