Abstract:Multi-participant discussions tend to unfold in a tree structure rather than a chain structure. Branching may occur for multiple reasons -- from the asynchronous nature of online platforms to a conscious decision by an interlocutor to disengage with part of the conversation. Predicting branching and understanding the reasons for creating new branches is important for many downstream tasks such as summarization and thread disentanglement and may help develop online spaces that encourage users to engage in online discussions in more meaningful ways. In this work, we define the novel task of branch prediction and propose GLOBS (Global Branching Score) -- a deep neural network model for predicting branching. GLOBS is evaluated on three large discussion forums from Reddit, achieving significant improvements over an array of competitive baselines and demonstrating better transferability. We affirm that structural, temporal, and linguistic features contribute to GLOBS success and find that branching is associated with a greater number of conversation participants and tends to occur in earlier levels of the conversation tree. We publicly release GLOBS and our implementation of all baseline models to allow reproducibility and promote further research on this important task.
Abstract:Detecting disclosures of individuals' employment status on social media can provide valuable information to match job seekers with suitable vacancies, offer social protection, or measure labor market flows. However, identifying such personal disclosures is a challenging task due to their rarity in a sea of social media content and the variety of linguistic forms used to describe them. Here, we examine three Active Learning (AL) strategies in real-world settings of extreme class imbalance, and identify five types of disclosures about individuals' employment status (e.g. job loss) in three languages using BERT-based classification models. Our findings show that, even under extreme imbalance settings, a small number of AL iterations is sufficient to obtain large and significant gains in precision, recall, and diversity of results compared to a supervised baseline with the same number of labels. We also find that no AL strategy consistently outperforms the rest. Qualitative analysis suggests that AL helps focus the attention mechanism of BERT on core terms and adjust the boundaries of semantic expansion, highlighting the importance of interpretable models to provide greater control and visibility into this dynamic learning process.