Abstract:We introduce Style Tailoring, a recipe to finetune Latent Diffusion Models (LDMs) in a distinct domain with high visual quality, prompt alignment and scene diversity. We choose sticker image generation as the target domain, as the images significantly differ from photorealistic samples typically generated by large-scale LDMs. We start with a competent text-to-image model, like Emu, and show that relying on prompt engineering with a photorealistic model to generate stickers leads to poor prompt alignment and scene diversity. To overcome these drawbacks, we first finetune Emu on millions of sticker-like images collected using weak supervision to elicit diversity. Next, we curate human-in-the-loop (HITL) Alignment and Style datasets from model generations, and finetune to improve prompt alignment and style alignment respectively. Sequential finetuning on these datasets poses a tradeoff between better style alignment and prompt alignment gains. To address this tradeoff, we propose a novel fine-tuning method called Style Tailoring, which jointly fits the content and style distribution and achieves best tradeoff. Evaluation results show our method improves visual quality by 14%, prompt alignment by 16.2% and scene diversity by 15.3%, compared to prompt engineering the base Emu model for stickers generation.
Abstract:Recent advances in conditional generative image models have enabled impressive results. On the one hand, text-based conditional models have achieved remarkable generation quality, by leveraging large-scale datasets of image-text pairs. To enable fine-grained controllability, however, text-based models require long prompts, whose details may be ignored by the model. On the other hand, layout-based conditional models have also witnessed significant advances. These models rely on bounding boxes or segmentation maps for precise spatial conditioning in combination with coarse semantic labels. The semantic labels, however, cannot be used to express detailed appearance characteristics. In this paper, we approach fine-grained scene controllability through image collages which allow a rich visual description of the desired scene as well as the appearance and location of the objects therein, without the need of class nor attribute labels. We introduce "mixing and matching scenes" (M&Ms), an approach that consists of an adversarially trained generative image model which is conditioned on appearance features and spatial positions of the different elements in a collage, and integrates these into a coherent image. We train our model on the OpenImages (OI) dataset and evaluate it on collages derived from OI and MS-COCO datasets. Our experiments on the OI dataset show that M&Ms outperforms baselines in terms of fine-grained scene controllability while being very competitive in terms of image quality and sample diversity. On the MS-COCO dataset, we highlight the generalization ability of our model by outperforming DALL-E in terms of the zero-shot FID metric, despite using two magnitudes fewer parameters and data. Collage based generative models have the potential to advance content creation in an efficient and effective way as they are intuitive to use and yield high quality generations.
Abstract:Data augmentation has become a crucial component to train state-of-the-art visual representation models. However, handcrafting combinations of transformations that lead to improved performances is a laborious task, which can result in visually unrealistic samples. To overcome these limitations, recent works have explored the use of generative models as learnable data augmentation tools, showing promising results in narrow application domains, e.g., few-shot learning and low-data medical imaging. In this paper, we introduce a data augmentation module, called DA_IC-GAN, which leverages instance-conditioned GAN generations and can be used off-the-shelf in conjunction with most state-of-the-art training recipes. We showcase the benefits of DA_IC-GAN by plugging it out-of-the-box into the supervised training of ResNets and DeiT models on the ImageNet dataset, and achieving accuracy boosts up to between 1%p and 2%p with the highest capacity models. Moreover, the learnt representations are shown to be more robust than the baselines when transferred to a handful of out-of-distribution datasets, and exhibit increased invariance to variations of instance and viewpoints. We additionally couple DA_IC-GAN with a self-supervised training recipe and show that we can also achieve an improvement of 1%p in accuracy in some settings. With this work, we strengthen the evidence on the potential of learnable data augmentations to improve visual representation learning, paving the road towards non-handcrafted augmentations in model training.
Abstract:In this paper, we propose revisited versions for two recent hotel recognition datasets: Hotels50K and Hotel-ID. The revisited versions provide evaluation setups with different levels of difficulty to better align with the intended real-world application, i.e. countering human trafficking. Real-world scenarios involve hotels and locations that are not captured in the current data sets, therefore it is important to consider evaluation settings where classes are truly unseen. We test this setup using multiple state-of-the-art image retrieval models and show that as expected, the models' performances decrease as the evaluation gets closer to the real-world unseen settings. The rankings of the best performing models also change across the different evaluation settings, which further motivates using the proposed revisited datasets.
Abstract:Generative Adversarial Networks (GANs) can generate near photo realistic images in narrow domains such as human faces. Yet, modeling complex distributions of datasets such as ImageNet and COCO-Stuff remains challenging in unconditional settings. In this paper, we take inspiration from kernel density estimation techniques and introduce a non-parametric approach to modeling distributions of complex datasets. We partition the data manifold into a mixture of overlapping neighborhoods described by a datapoint and its nearest neighbors, and introduce a model, called instance-conditioned GAN (IC-GAN), which learns the distribution around each datapoint. Experimental results on ImageNet and COCO-Stuff show that IC-GAN significantly improves over unconditional models and unsupervised data partitioning baselines. Moreover, we show that IC-GAN can effortlessly transfer to datasets not seen during training by simply changing the conditioning instances, and still generate realistic images. Finally, we extend IC-GAN to the class-conditional case and show semantically controllable generation and competitive quantitative results on ImageNet; while improving over BigGAN on ImageNet-LT. We will opensource our code and trained models to reproduce the reported results.
Abstract:Although recent complex scene conditional generation models generate increasingly appealing scenes, it is very hard to assess which models perform better and why. This is often due to models being trained to fit different data splits, and defining their own experimental setups. In this paper, we propose a methodology to compare complex scene conditional generation models, and provide an in-depth analysis that assesses the ability of each model to (1) fit the training distribution and hence perform well on seen conditionings, (2) to generalize to unseen conditionings composed of seen object combinations, and (3) generalize to unseen conditionings composed of unseen object combinations. As a result, we observe that recent methods are able to generate recognizable scenes given seen conditionings, and exploit compositionality to generalize to unseen conditionings with seen object combinations. However, all methods suffer from noticeable image quality degradation when asked to generate images from conditionings composed of unseen object combinations. Moreover, through our analysis, we identify the advantages of different pipeline components, and find that (1) encouraging compositionality through instance-wise spatial conditioning normalizations increases robustness to both types of unseen conditionings, (2) using semantically aware losses such as the scene-graph perceptual similarity helps improve some dimensions of the generation process, and (3) enhancing the quality of generated masks and the quality of the individual objects are crucial steps to improve robustness to both types of unseen conditionings.
Abstract:Learning-based approaches for semantic segmentation have two inherent challenges. First, acquiring pixel-wise labels is expensive and time-consuming. Second, realistic segmentation datasets are highly unbalanced: some categories are much more abundant than others, biasing the performance to the most represented ones. In this paper, we are interested in focusing human labelling effort on a small subset of a larger pool of data, minimizing this effort while maximizing performance of a segmentation model on a hold-out set. We present a new active learning strategy for semantic segmentation based on deep reinforcement learning (RL). An agent learns a policy to select a subset of small informative image regions -- opposed to entire images -- to be labeled, from a pool of unlabeled data. The region selection decision is made based on predictions and uncertainties of the segmentation model being trained. Our method proposes a new modification of the deep Q-network (DQN) formulation for active learning, adapting it to the large-scale nature of semantic segmentation problems. We test the proof of concept in CamVid and provide results in the large-scale dataset Cityscapes. On Cityscapes, our deep RL region-based DQN approach requires roughly 30% less additional labeled data than our most competitive baseline to reach the same performance. Moreover, we find that our method asks for more labels of under-represented categories compared to the baselines, improving their performance and helping to mitigate class imbalance.
Abstract:State-of-the-art semantic segmentation approaches increase the receptive field of their models by using either a downsampling path composed of poolings/strided convolutions or successive dilated convolutions. However, it is not clear which operation leads to best results. In this paper, we systematically study the differences introduced by distinct receptive field enlargement methods and their impact on the performance of a novel architecture, called Fully Convolutional DenseResNet (FC-DRN). FC-DRN has a densely connected backbone composed of residual networks. Following standard image segmentation architectures, receptive field enlargement operations that change the representation level are interleaved among residual networks. This allows the model to exploit the benefits of both residual and dense connectivity patterns, namely: gradient flow, iterative refinement of representations, multi-scale feature combination and deep supervision. In order to highlight the potential of our model, we test it on the challenging CamVid urban scene understanding benchmark and make the following observations: 1) downsampling operations outperform dilations when the model is trained from scratch, 2) dilations are useful during the finetuning step of the model, 3) coarser representations require less refinement steps, and 4) ResNets (by model construction) are good regularizers, since they can reduce the model capacity when needed. Finally, we compare our architecture to alternative methods and report state-of-the-art result on the Camvid dataset, with at least twice fewer parameters.
Abstract:We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in which nodes are able to attend over their neighborhoods' features, we enable (implicitly) specifying different weights to different nodes in a neighborhood, without requiring any kind of costly matrix operation (such as inversion) or depending on knowing the graph structure upfront. In this way, we address several key challenges of spectral-based graph neural networks simultaneously, and make our model readily applicable to inductive as well as transductive problems. Our GAT models have achieved or matched state-of-the-art results across four established transductive and inductive graph benchmarks: the Cora, Citeseer and Pubmed citation network datasets, as well as a protein-protein interaction dataset (wherein test graphs remain unseen during training).