Topic:Multi Agent Reinforcement Learning
What is Multi Agent Reinforcement Learning? Multi-agent reinforcement learning is the process of training multiple agents to interact and collaborate in a shared environment.
Papers and Code
Sep 16, 2025
Abstract:Benchmarks are crucial for assessing multi-agent reinforcement learning (MARL) algorithms. While StarCraft II-related environments have driven significant advances in MARL, existing benchmarks like SMAC focus primarily on micromanagement, limiting comprehensive evaluation of high-level strategic intelligence. To address this, we introduce HLSMAC, a new cooperative MARL benchmark with 12 carefully designed StarCraft II scenarios based on classical stratagems from the Thirty-Six Stratagems. Each scenario corresponds to a specific stratagem and is designed to challenge agents with diverse strategic elements, including tactical maneuvering, timing coordination, and deception, thereby opening up avenues for evaluating high-level strategic decision-making capabilities. We also propose novel metrics across multiple dimensions beyond conventional win rate, such as ability utilization and advancement efficiency, to assess agents' overall performance within the HLSMAC environment. We integrate state-of-the-art MARL algorithms and LLM-based agents with our benchmark and conduct comprehensive experiments. The results demonstrate that HLSMAC serves as a robust testbed for advancing multi-agent strategic decision-making.
* 30 pages, 13 figures with appendix
Via

Sep 16, 2025
Abstract:Model-based reinforcement learning (MBRL) has shown significant potential in robotics due to its high sample efficiency and planning capability. However, extending MBRL to multi-robot cooperation remains challenging due to the complexity of joint dynamics. To address this, we propose the Sequential World Model (SeqWM), a novel framework that integrates the sequential paradigm into model-based multi-agent reinforcement learning. SeqWM employs independent, sequentially structured agent-wise world models to decompose complex joint dynamics. Latent rollouts and decision-making are performed through sequential communication, where each agent generates its future trajectory and plans its actions based on the predictions of its predecessors. This design enables explicit intention sharing, enhancing cooperative performance, and reduces communication overhead to linear complexity. Results in challenging simulated environments (Bi-DexHands and Multi-Quad) show that SeqWM outperforms existing state-of-the-art model-free and model-based baselines in both overall performance and sample efficiency, while exhibiting advanced cooperative behaviors such as predictive adaptation and role division. Furthermore, SeqWM has been success fully deployed on physical quadruped robots, demonstrating its effectiveness in real-world multi-robot systems. Demos and code are available at: https://github.com/zhaozijie2022/seqwm-marl
Via

Sep 16, 2025
Abstract:In volatile financial markets, balancing risk and return remains a significant challenge. Traditional approaches often focus solely on equity allocation, overlooking the strategic advantages of options trading for dynamic risk hedging. This work presents DeltaHedge, a multi-agent framework that integrates options trading with AI-driven portfolio management. By combining advanced reinforcement learning techniques with an ensembled options-based hedging strategy, DeltaHedge enhances risk-adjusted returns and stabilizes portfolio performance across varying market conditions. Experimental results demonstrate that DeltaHedge outperforms traditional strategies and standalone models, underscoring its potential to transform practical portfolio management in complex financial environments. Building on these findings, this paper contributes to the fields of quantitative finance and AI-driven portfolio optimization by introducing a novel multi-agent system for integrating options trading strategies, addressing a gap in the existing literature.
* PACIS 2025 Proceedings, Track 02: AI and Machine Learning, Paper
25
* Presented at Pacific Asia Conference on Information Systems (PACIS
2025), Kuala Lumpur. Official proceedings available at
https://aisel.aisnet.org/pacis2025/aiandml/aiandml/25/. 16 pages, 7 figures,
3 tables
Via

Sep 16, 2025
Abstract:The Vision-and-Language Navigation (VLN) task requires an agent to follow natural language instructions and navigate through complex environments. Existing MLLM-based VLN methods primarily rely on imitation learning (IL) and often use DAgger for post-training to mitigate covariate shift. While effective, these approaches incur substantial data collection and training costs. Reinforcement learning (RL) offers a promising alternative. However, prior VLN RL methods lack dynamic interaction with the environment and depend on expert trajectories for reward shaping, rather than engaging in open-ended active exploration. This restricts the agent's ability to discover diverse and plausible navigation routes. To address these limitations, we propose ActiveVLN, a VLN framework that explicitly enables active exploration through multi-turn RL. In the first stage, a small fraction of expert trajectories is used for IL to bootstrap the agent. In the second stage, the agent iteratively predicts and executes actions, automatically collects diverse trajectories, and optimizes multiple rollouts via the GRPO objective. To further improve RL efficiency, we introduce a dynamic early-stopping strategy to prune long-tail or likely failed trajectories, along with additional engineering optimizations. Experiments show that ActiveVLN achieves the largest performance gains over IL baselines compared to both DAgger-based and prior RL-based post-training methods, while reaching competitive performance with state-of-the-art approaches despite using a smaller model. Code and data will be released soon.
Via

Sep 16, 2025
Abstract:Large language models (LLMs) have demonstrated strong capabilities in language understanding and reasoning, yet they remain limited when tackling real-world tasks that require up-to-date knowledge, precise operations, or specialized tool use. To address this, we propose Tool-R1, a reinforcement learning framework that enables LLMs to perform general, compositional, and multi-step tool use by generating executable Python code. Tool-R1 supports integration of user-defined tools and standard libraries, with variable sharing across steps to construct coherent workflows. An outcome-based reward function, combining LLM-based answer judgment and code execution success, guides policy optimization. To improve training efficiency, we maintain a dynamic sample queue to cache and reuse high-quality trajectories, reducing the overhead of costly online sampling. Experiments on the GAIA benchmark show that Tool-R1 substantially improves both accuracy and robustness, achieving about 10\% gain over strong baselines, with larger improvements on complex multi-step tasks. These results highlight the potential of Tool-R1 for enabling reliable and efficient tool-augmented reasoning in real-world applications. Our code will be available at https://github.com/YBYBZhang/Tool-R1.
Via

Sep 11, 2025
Abstract:In robotic systems, the performance of reinforcement learning depends on the rationality of predefined reward functions. However, manually designed reward functions often lead to policy failures due to inaccuracies. Inverse Reinforcement Learning (IRL) addresses this problem by inferring implicit reward functions from expert demonstrations. Nevertheless, existing methods rely heavily on large amounts of expert demonstrations to accurately recover the reward function. The high cost of collecting expert demonstrations in robotic applications, particularly in multi-robot systems, severely hinders the practical deployment of IRL. Consequently, improving sample efficiency has emerged as a critical challenge in multi-agent inverse reinforcement learning (MIRL). Inspired by the symmetry inherent in multi-agent systems, this work theoretically demonstrates that leveraging symmetry enables the recovery of more accurate reward functions. Building upon this insight, we propose a universal framework that integrates symmetry into existing multi-agent adversarial IRL algorithms, thereby significantly enhancing sample efficiency. Experimental results from multiple challenging tasks have demonstrated the effectiveness of this framework. Further validation in physical multi-robot systems has shown the practicality of our method.
* 8pages, 6 figures. Accepted for publication in the Proceedings of the
2025 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2025) as oral presentation
Via

Sep 11, 2025
Abstract:Existing reinforcement learning (RL) methods struggle with complex dynamical systems that demand interactions at high frequencies or irregular time intervals. Continuous-time RL (CTRL) has emerged as a promising alternative by replacing discrete-time Bellman recursion with differential value functions defined as viscosity solutions of the Hamilton--Jacobi--Bellman (HJB) equation. While CTRL has shown promise, its applications have been largely limited to the single-agent domain. This limitation stems from two key challenges: (i) conventional solution methods for HJB equations suffer from the curse of dimensionality (CoD), making them intractable in high-dimensional systems; and (ii) even with HJB-based learning approaches, accurately approximating centralized value functions in multi-agent settings remains difficult, which in turn destabilizes policy training. In this paper, we propose a CT-MARL framework that uses physics-informed neural networks (PINNs) to approximate HJB-based value functions at scale. To ensure the value is consistent with its differential structure, we align value learning with value-gradient learning by introducing a Value Gradient Iteration (VGI) module that iteratively refines value gradients along trajectories. This improves gradient fidelity, in turn yielding more accurate values and stronger policy learning. We evaluate our method using continuous-time variants of standard benchmarks, including multi-agent particle environment (MPE) and multi-agent MuJoCo. Our results demonstrate that our approach consistently outperforms existing continuous-time RL baselines and scales to complex multi-agent dynamics.
* 19 pages, 10 figures
Via

Sep 10, 2025
Abstract:The increasing reliance on cyber physical infrastructure in modern power systems has amplified the risk of targeted cyber attacks, necessitating robust and adaptive resilience strategies. This paper presents a mathematically rigorous game theoretic framework to evaluate and enhance microgrid resilience using a combination of quantitative resilience metrics Load Served Ratio LSR, Critical Load Resilience CLR, Topological Survivability Score TSS, and DER Resilience Score DRS. These are integrated into a unified payoff matrix using the Analytic Hierarchy Process AHP to assess attack defense interactions. The framework is formalized as a finite horizon Markov Decision Process MDP with formal convergence guarantees and computational complexity bounds. Three case studies are developed 1. static attacks analyzed via Nash equilibrium, 2. severe attacks incorporating high impact strategies, and 3. adaptive attacks using Stackelberg games, regret matching, softmax heuristics, and Multi Agent Q Learning. Rigorous theoretical analysis provides convergence proofs with explicit rates , PAC learning sample complexity bounds, and computational complexity analysis. The framework is tested on an enhanced IEEE 33bus distribution system with DERs and control switches, demonstrating the effectiveness of adaptive and strategic defenses in improving cyber physical resilience with statistically significant improvements of 18.7% 2.1% over static approaches.
Via

Sep 10, 2025
Abstract:Developing autonomous LLM agents capable of making a series of intelligent decisions to solve complex, real-world tasks is a fast-evolving frontier. Like human cognitive development, agents are expected to acquire knowledge and skills through exploration and interaction with the environment. Despite advances, the community still lacks a unified, interactive reinforcement learning (RL) framework that can effectively train such agents from scratch -- without relying on supervised fine-tuning (SFT) -- across diverse and realistic environments. To bridge this gap, we introduce AgentGym-RL, a new framework to train LLM agents for multi-turn interactive decision-making through RL. The framework features a modular and decoupled architecture, ensuring high flexibility and extensibility. It encompasses a wide variety of real-world scenarios, and supports mainstream RL algorithms. Furthermore, we propose ScalingInter-RL, a training approach designed for exploration-exploitation balance and stable RL optimization. In early stages, it emphasizes exploitation by restricting the number of interactions, and gradually shifts towards exploration with larger horizons to encourage diverse problem-solving strategies. In this way, the agent develops more diverse behaviors and is less prone to collapse under long horizons. We perform extensive experiments to validate the stability and effectiveness of both the AgentGym-RL framework and the ScalingInter-RL approach. Our agents match or surpass commercial models on 27 tasks across diverse environments. We offer key insights and will open-source the complete AgentGym-RL framework -- including code and datasets -- to empower the research community in developing the next generation of intelligent agents.
Via

Sep 11, 2025
Abstract:Navigating and understanding complex and unknown environments autonomously demands more than just basic perception and movement from embodied agents. Truly effective exploration requires agents to possess higher-level cognitive abilities, the ability to reason about their surroundings, and make more informed decisions regarding exploration strategies. However, traditional RL approaches struggle to balance efficient exploration and semantic understanding due to limited cognitive capabilities embedded in the small policies for the agents, leading often to human drivers when dealing with semantic exploration. In this paper, we address this challenge by presenting a novel Deep Reinforcement Learning (DRL) architecture that is specifically designed for resource efficient semantic exploration. A key methodological contribution is the integration of a Vision-Language Model (VLM) common-sense through a layered reward function. The VLM query is modeled as a dedicated action, allowing the agent to strategically query the VLM only when deemed necessary for gaining external guidance, thereby conserving resources. This mechanism is combined with a curriculum learning strategy designed to guide learning at different levels of complexity to ensure robust and stable learning. Our experimental evaluation results convincingly demonstrate that our agent achieves significantly enhanced object discovery rates and develops a learned capability to effectively navigate towards semantically rich regions. Furthermore, it also shows a strategic mastery of when to prompt for external environmental information. By demonstrating a practical and scalable method for embedding common-sense semantic reasoning with autonomous agents, this research provides a novel approach to pursuing a fully intelligent and self-guided exploration in robotics.
* The 19th International Conference on Intelligent Autonomous Systems
(IAS 19), 2025, Genoa
Via
