Abstract:Non-terrestrial networks (NTNs) are emerging as a core component of future 6G communication systems, providing global connectivity and supporting data-intensive applications. In this paper, we propose a distributed hierarchical federated learning (HFL) framework within the NTN architecture, leveraging a high altitude platform station (HAPS) constellation as intermediate distributed FL servers. Our framework integrates both low-Earth orbit (LEO) satellites and ground clients in the FL training process while utilizing geostationary orbit (GEO) and medium-Earth orbit (MEO) satellites as relays to exchange FL global models across other HAPS constellations worldwide, enabling seamless, global-scale learning. The proposed framework offers several key benefits: (i) enhanced privacy through the decentralization of the FL mechanism by leveraging the HAPS constellation, (ii) improved model accuracy and reduced training loss while balancing latency, (iii) increased scalability of FL systems through ubiquitous connectivity by utilizing MEO and GEO satellites, and (iv) the ability to use FL data, such as resource utilization metrics, to further optimize the NTN architecture from a network management perspective. A numerical study demonstrates the proposed framework's effectiveness, with improved model accuracy, reduced training loss, and efficient latency management. The article also includes a brief review of FL in NTNs and highlights key challenges and future research directions.
Abstract:In order to bolster the next generation of wireless networks, there has been a great deal of interest in non-terrestrial networks (NTN), including satellites, high altitude platform stations (HAPS), and uncrewed aerial vehicles (UAV). To unlock their full potential, these platforms can integrate advanced technologies such as reconfigurable intelligent surfaces~(RIS) and next-generation multiple access (NGMA). However, in practical applications, transceivers often suffer from radio frequency (RF) impairments, which limit system performance. In this regard, this paper explores the potential of multi-layer NTN architecture to mitigate path propagation loss and improve network performance under hardware impairment limitations. First, we present current research activities in the NTN framework, including RIS, multiple access technologies, and hardware impairments. Next, we introduce a multi-layer NTN architecture with hardware limitations. This architecture includes HAPS super-macro base stations (HAPS-SMBS), UAVs--equipped with passive or active transmissive RIS--, and NGMA techniques, like non-orthogonal multiple access (NOMA), as the multiple access techniques to serve terrestrial devices. Additionally, we present and discuss potential use cases of the proposed multi-layer architecture considering hardware impairments. The multi-layer NTN architecture combined with advanced technologies, such as RIS and NGMA, demonstrates promising results; however, the performance degradation is attributed to RF impairments. Finally, we identify future research directions, including RF impairment mitigation, UAV power management, and antenna designs.
Abstract:Federated Learning (FL) has emerged as a significant paradigm for training machine learning models. This is due to its data-privacy-preserving property and its efficient exploitation of distributed computational resources. This is achieved by conducting the training process in parallel at distributed users. However, traditional FL strategies grapple with difficulties in evaluating the quality of received models, handling unbalanced models, and reducing the impact of detrimental models. To resolve these problems, we introduce a novel federated learning framework, which we call federated testing for federated learning (FedTest). In the FedTest method, the local data of a specific user is used to train the model of that user and test the models of the other users. This approach enables users to test each other's models and determine an accurate score for each. This score can then be used to aggregate the models efficiently and identify any malicious ones. Our numerical results reveal that the proposed method not only accelerates convergence rates but also diminishes the potential influence of malicious users. This significantly enhances the overall efficiency and robustness of FL systems.
Abstract:The advent of Non-Terrestrial Networks (NTN) represents a compelling response to the International Mobile Telecommunications 2030 (IMT-2030) framework, enabling the delivery of advanced, seamless connectivity that supports reliable, sustainable, and resilient communication systems. Nevertheless, the integration of NTN with Terrestrial Networks (TN) necessitates considerable alterations to the existing cellular infrastructure in order to address the challenges intrinsic to NTN implementation. Additionally, Ambient Backscatter Communication (AmBC), which utilizes ambient Radio Frequency (RF) signals to transmit data to the intended recipient by altering and reflecting these signals, exhibits considerable potential for the effective integration of NTN and TN. Furthermore, AmBC is constrained by its limitations regarding power, interference, and other related factors. In contrast, the application of Artificial Intelligence (AI) within wireless networks demonstrates significant potential for predictive analytics through the use of extensive datasets. AI techniques enable the real-time optimization of network parameters, mitigating interference and power limitations in AmBC. These predictive models also enhance the adaptive integration of NTN and TN, driving significant improvements in network reliability and Energy Efficiency (EE). In this paper, we present a comprehensive examination of how the commixture of AI, AmBC, and NTN can facilitate the integration of NTN and TN. We also provide a thorough analysis indicating a marked enhancement in EE predicated on this triadic relationship.
Abstract:Path loss prediction is a beneficial tool for efficient use of the radio frequency spectrum. Building on prior research on high-resolution map-based path loss models, this paper studies convolutional neural network input representations in more detail. We investigate different methods of representing scalar features in convolutional neural networks. Specifically, we compare using frequency and distance as input channels to convolutional layers or as scalar inputs to regression layers. We assess model performance using three different feature configurations and find that representing scalar features as image channels results in the strongest generalization.
Abstract:Radio deployments and spectrum planning can benefit from path loss predictions. Obstructions along a communications link are often considered implicitly or through derived metrics such as representative clutter height or total obstruction depth. In this paper, we propose a path-specific path loss prediction method that uses convolutional neural networks to automatically perform feature extraction from high-resolution obstruction height maps. Our methods result in low prediction error in a variety of environments without requiring derived obstruction metrics.
Abstract:In this correspondence, a new single-carrier waveform, called chirped discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-s-OFDM), is proposed for the sixth generation of communications. By chirping DFT-s-OFDM in the time domain, the proposed waveform maintains the low peak-to-average-power ratio (PAPR) of DFT-s-OFDM. Thanks to full-band transmission and symbols retransmission enabled by chirping and discrete Fourier transform (DFT) precoding, the proposed waveform can enhance noise suppression of linear minimum mean square error equalization. Its bit error rate (BER) upper bound and diversity order are derived using pairwise error probability. Simulation results confirm that the proposed waveform outperforms the state-of-the-art waveforms in terms of BER, output signal-to-noise-ratio, and PAPR.
Abstract:In this paper, we explore the problem of utilizing Integrated Access and Backhaul (IAB) technology in Non-Terrestrial Networks (NTN), with a particular focus on aerial access networks. We consider an Uncrewed Aerial Vehicle (UAV)-based wireless network comprised of two layers of UAVs: (a) a lower layer consisting a number of flying users and a UAV Base Station (BS) that provides coverage for terrestrial users and, (b) an upper layer designated to provide both wireless access for flying users and backhaul connectivity for UAV BS. By adopting IAB technology, the backhaul and access links collaboratively share their resources, enabling aerial backhauling and the utilization of the same infrastructure and frequency resources for access links. A sum-rate maximization problem is formulated by considering aerial backhaul constraints to optimally allocate the frequency spectrum between aerial and terrestrial networks. We decompose the resulting non-convex optimization problem into two sub-problems of beamforming and spectrum allocation and then propose efficient solutions for each. Numerical results in different scenarios yield insightful findings about the effectiveness of using the IAB technique in aerial networks.
Abstract:Wireless communications advance hand-in-hand with artificial intelligence (AI), indicating an interconnected advancement where each facilitates and benefits from the other. This synergy is particularly evident in the development of the sixth-generation technology standard for mobile networks (6G), envisioned to be AI-native. Generative-AI (GenAI), a novel technology capable of producing various types of outputs, including text, images, and videos, offers significant potential for wireless communications, with its distinctive features. Traditionally, conventional AI techniques have been employed for predictions, classifications, and optimization, while GenAI has more to offer. This article introduces the concept of strategic demand-planning through demand-labeling, demand-shaping, and demand-rescheduling. Accordingly, GenAI is proposed as a powerful tool to facilitate demand-shaping in wireless networks. More specifically, GenAI is used to compress and convert the content of various kind (e.g., from a higher bandwidth mode to a lower one, such as from a video to text), which subsequently enhances performance of wireless networks in various usage scenarios such as cell-switching, user association and load balancing, interference management, and disaster scenarios management. Therefore, GenAI can serve a function in saving energy and spectrum in wireless networks. With recent advancements in AI, including sophisticated algorithms like large-language-models and the development of more powerful hardware built exclusively for AI tasks, such as AI accelerators, the concept of demand-planning, particularly demand-shaping through GenAI, becomes increasingly relevant. Furthermore, recent efforts to make GenAI accessible on devices, such as user terminals, make the implementation of this concept even more straightforward and feasible.
Abstract:The high altitude platform station (HAPS) technology is garnering significant interest as a viable technology for serving as base stations in communication networks. However, HAPS faces the challenge of high spatial correlation among adjacent users' channel gains which is due to the dominant line-of-sight (LoS) path between HAPS and terrestrial users. Furthermore, there is a spatial correlation among antenna elements of HAPS that depends on the propagation environment and the distance between elements of the antenna array. This paper presents an antenna architecture for HAPS and considers the mentioned issues by characterizing the channel gain and the spatial correlation matrix of the HAPS. We propose a cylindrical antenna for HAPS that utilizes vertical uniform linear array (ULA) sectors. Moreover, to address the issue of high spatial correlation among users, the non-orthogonal multiple access (NOMA) clustering method is proposed. An algorithm is also developed to allocate power among users to maximize both spectral efficiency and energy efficiency while meeting quality of service (QoS) and successive interference cancellation (SIC) conditions. Finally, simulation results indicate that the spatial correlation has a significant impact on spectral efficiency and energy efficiency in multiple antenna HAPS systems.