Abstract:Radio deployments and spectrum planning can benefit from path loss predictions. Obstructions along a communications link are often considered implicitly or through derived metrics such as representative clutter height or total obstruction depth. In this paper, we propose a path-specific path loss prediction method that uses convolutional neural networks to automatically perform feature extraction from high-resolution obstruction height maps. Our methods result in low prediction error in a variety of environments without requiring derived obstruction metrics.
Abstract:Path loss prediction for wireless communications is highly dependent on the local environment. Propagation models including clutter information have been shown to significantly increase model accuracy. This paper explores the application of deep learning to satellite imagery to identify environmental clutter types automatically. Recognizing these clutter types has numerous uses, but our main application is to use clutter information to enhance propagation prediction models. Knowing the type of obstruction (tree, building, and further classifications) can improve the prediction accuracy of key propagation metrics such as path loss.