Manual observation and monitoring of individual cows for disease detection present significant challenges in large-scale farming operations, as the process is labor-intensive, time-consuming, and prone to reduced accuracy. The reliance on human observation often leads to delays in identifying symptoms, as the sheer number of animals can hinder timely attention to each cow. Consequently, the accuracy and precision of disease detection are significantly compromised, potentially affecting animal health and overall farm productivity. Furthermore, organizing and managing human resources for the manual observation and monitoring of cow health is a complex and economically demanding task. It necessitates the involvement of skilled personnel, thereby contributing to elevated farm maintenance costs and operational inefficiencies. Therefore, the development of an automated, low-cost, and reliable smart system is essential to address these challenges effectively. Although several studies have been conducted in this domain, very few have simultaneously considered the detection of multiple common diseases with high prediction accuracy. However, advancements in Internet of Things (IoT), Machine Learning (ML), and Cyber-Physical Systems have enabled the automation of cow health monitoring with enhanced accuracy and reduced operational costs. This study proposes an IoT-enabled Cyber-Physical System framework designed to monitor the daily activities and health status of cow. A novel ML algorithm is proposed for the diagnosis of common cow diseases using collected physiological and behavioral data. The algorithm is designed to predict multiple diseases by analyzing a comprehensive set of recorded physiological and behavioral features, enabling accurate and efficient health assessment.
Brain Magnetic Resonance Imaging (MRI) plays a central role in studying neurological development, aging, and diseases. One key application is Brain Age Prediction (BAP), which estimates an individual's biological brain age from MRI data. Effective BAP models require large, diverse, and age-balanced datasets, whereas existing 3D MRI datasets are demographically skewed, limiting fairness and generalizability. Acquiring new data is costly and ethically constrained, motivating generative data augmentation. Current generative methods are often based on latent diffusion models, which operate in learned low dimensional latent spaces to address the memory demands of volumetric MRI data. However, these methods are typically slow at inference, may introduce artifacts due to latent compression, and are rarely conditioned on age, thereby affecting the BAP performance. In this work, we propose FlowLet, a conditional generative framework that synthesizes age-conditioned 3D MRIs by leveraging flow matching within an invertible 3D wavelet domain, helping to avoid reconstruction artifacts and reducing computational demands. Experiments show that FlowLet generates high-fidelity volumes with few sampling steps. Training BAP models with data generated by FlowLet improves performance for underrepresented age groups, and region-based analysis confirms preservation of anatomical structures.
Despite the fact that cancer survivability rates vary greatly between stages, traditional survival prediction models have frequently been trained and assessed using examples from all combined phases of the disease. This method may result in an overestimation of performance and ignore the stage-specific variations. Using the SEER dataset, we created and verified explainable machine learning (ML) models to predict stage-specific cancer survivability in colorectal, stomach, and liver cancers. ML-based cancer survival analysis has been a long-standing topic in the literature; however, studies involving the explainability and transparency of ML survivability models are limited. Our use of explainability techniques, including SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME), enabled us to illustrate significant feature-cancer stage interactions that would have remained hidden in traditional black-box models. We identified how certain demographic and clinical variables influenced survival differently across cancer stages and types. These insights provide not only transparency but also clinical relevance, supporting personalized treatment planning. By focusing on stage-specific models, this study provides new insights into the most important factors at each stage of cancer, offering transparency and potential clinical relevance to support personalized treatment planning.
Chronic diseases such as diabetes pose significant management challenges, particularly due to the risk of complications like hypoglycemia, which require timely detection and intervention. Continuous health monitoring through wearable sensors offers a promising solution for early prediction of glycemic events. However, effective use of multisensor data is hindered by issues such as signal noise and frequent missing values. This study examines the limitations of existing datasets and emphasizes the temporal characteristics of key features relevant to hypoglycemia prediction. A comprehensive analysis of imputation techniques is conducted, focusing on those employed in state-of-the-art studies. Furthermore, imputation methods derived from machine learning and deep learning applications in other healthcare contexts are evaluated for their potential to address longer gaps in time-series data. Based on this analysis, a systematic paradigm is proposed, wherein imputation strategies are tailored to the nature of specific features and the duration of missing intervals. The review concludes by emphasizing the importance of investigating the temporal dynamics of individual features and the implementation of multiple, feature-specific imputation techniques to effectively address heterogeneous temporal patterns inherent in the data.
Plant disease diagnosis is essential to farmers' management choices because plant diseases frequently lower crop yield and product quality. For harvests to flourish and agricultural productivity to boost, grape leaf disease detection is important. The plant disease dataset contains grape leaf diseases total of 9,032 images of four classes, among them three classes are leaf diseases, and the other one is healthy leaves. After rigorous pre-processing dataset was split (70% training, 20% validation, 10% testing), and two pre-trained models were deployed: InceptionV3 and Xception. Xception shows a promising result of 96.23% accuracy, which is remarkable than InceptionV3. Adversarial Training is used for robustness, along with more transparency. Grad-CAM is integrated to confirm the leaf disease. Finally deployed a web application using Streamlit with a heatmap visualization and prediction with confidence level for robust grape leaf disease classification.
Spatio-temporal reasoning in time series involves the explicit synthesis of temporal dynamics, spatial dependencies, and textual context. This capability is vital for high-stakes decision-making in systems such as traffic networks, power grids, and disease propagation. However, the field remains underdeveloped because most existing works prioritize predictive accuracy over reasoning. To address the gap, we introduce ST-Bench, a benchmark consisting of four core tasks, including etiological reasoning, entity identification, correlation reasoning, and in-context forecasting, developed via a network SDE-based multi-agent data synthesis pipeline. We then propose STReasoner, which empowers LLM to integrate time series, graph structure, and text for explicit reasoning. To promote spatially grounded logic, we introduce S-GRPO, a reinforcement learning algorithm that rewards performance gains specifically attributable to spatial information. Experiments show that STReasoner achieves average accuracy gains between 17% and 135% at only 0.004X the cost of proprietary models and generalizes robustly to real-world data.
While Large Language Models (LLMs) have shown strong performance on clinical text understanding, they struggle with longitudinal prediction tasks such as dementia prognosis, which require reasoning over complex, non-monotonic symptom trajectories across multiple visits. Standard supervised training lacks explicit annotations for symptom evolution, while direct Reinforcement Learning (RL) is hindered by sparse binary rewards. To address this challenge, we introduce Dementia-R1, an RL-based framework for longitudinal dementia prognosis from unstructured clinical notes. Our approach adopts a Cold-Start RL strategy that pre-trains the model to predict verifiable clinical indices extracted from patient histories, enhancing the capability to reason about disease progression before determining the final clinical status. Extensive experiments demonstrate that Dementia-R1 achieves an F1 score of 77.03% on real-world unstructured clinical datasets. Notably, on the ADNI benchmark, our 7B model rivals GPT-4o, effectively capturing fluctuating cognitive trajectories. Code is available at https://anonymous.4open.science/r/dementiar1-CDB5
Molecular subtyping of PDAC into basal-like and classical has established prognostic and predictive value. However, its use in clinical practice is limited by cost, turnaround time, and tissue requirements, thereby restricting its application in the management of PDAC. We introduce PanSubNet, an interpretable deep learning framework that predicts therapy-relevant molecular subtypes directly from standard H&E-stained WSIs. PanSubNet was developed using data from 1,055 patients across two multi-institutional cohorts (PANCAN, n=846; TCGA, n=209) with paired histology and RNA-seq data. Ground-truth labels were derived using the validated Moffitt 50-gene signature refined by GATA6 expression. The model employs dual-scale architecture that fuses cellular-level morphology with tissue-level architecture, leveraging attention mechanisms for multi-scale representation learning and transparent feature attribution. On internal validation within PANCAN using five-fold cross-validation, PanSubNet achieved mean AUC of 88.5% with balanced sensitivity and specificity. External validation on the independent TCGA cohort without fine-tuning demonstrated robust generalizability (AUC 84.0%). PanSubNet preserved and, in metastatic disease, strengthened prognostic stratification compared to RNA-seq based labels. Prediction uncertainty linked to intermediate transcriptional states, not classification noise. Model predictions are aligned with established transcriptomic programs, differentiation markers, and DNA damage repair signatures. By enabling rapid, cost-effective molecular stratification from routine H&E-stained slides, PanSubNet offers a clinically deployable and interpretable tool for genetic subtyping. We are gathering data from two institutions to validate and assess real-world performance, supporting integration into digital pathology workflows and advancing precision oncology for PDAC.
Metagenomic disease prediction commonly relies on species abundance tables derived from large, incomplete reference catalogs, constraining resolution and discarding valuable information contained in DNA reads. To overcome these limitations, we introduce MetagenBERT, a Transformer based framework that produces end to end metagenome embeddings directly from raw DNA sequences, without taxonomic or functional annotations. Reads are embedded using foundational genomic language models (DNABERT2 and the microbiome specialized DNABERTMS), then aggregated through a scalable clustering strategy based on FAISS accelerated KMeans. Each metagenome is represented as a cluster abundance vector summarizing the distribution of its embedded reads. We evaluate this approach on five benchmark gut microbiome datasets (Cirrhosis, T2D, Obesity, IBD, CRC). MetagenBERT achieves competitive or superior AUC performance relative to species abundance baselines across most tasks. Concatenating both representations further improves prediction, demonstrating complementarity between taxonomic and embedding derived signals. Clustering remains robust when applied to as little as 10% of reads, highlighting substantial redundancy in metagenomes and enabling major computational gains. We additionally introduce MetagenBERT Glob Mcardis, a cross cohort variant trained on the large, phenotypically diverse MetaCardis cohort and transferred to other datasets, retaining predictive signal including for unseen phenotypes, indicating the feasibility of a foundation model for metagenome representation. Robustness analyses (PERMANOVA, PERMDISP, entropy) show consistent separation of different states across subsamples. Overall, MetagenBERT provides a scalable, annotation free representation of metagenomes pointing toward future phenotype aware generalization across heterogeneous cohorts and sequencing technologies.
Reliable epidemiological reasoning requires synthesizing study evidence to infer disease burden, transmission dynamics, and intervention effects at the population level. Existing medical question answering benchmarks primarily emphasize clinical knowledge or patient-level reasoning, yet few systematically evaluate evidence-grounded epidemiological inference. We present EpiQAL, the first diagnostic benchmark for epidemiological question answering across diverse diseases, comprising three subsets built from open-access literature. The subsets respectively evaluate text-grounded factual recall, multi-step inference linking document evidence with epidemiological principles, and conclusion reconstruction with the Discussion section withheld. Construction combines expert-designed taxonomy guidance, multi-model verification, and retrieval-based difficulty control. Experiments on ten open models reveal that current LLMs show limited performance on epidemiological reasoning, with multi-step inference posing the greatest challenge. Model rankings shift across subsets, and scale alone does not predict success. Chain-of-Thought prompting benefits multi-step inference but yields mixed results elsewhere. EpiQAL provides fine-grained diagnostic signals for evidence grounding, inferential reasoning, and conclusion reconstruction.