Abstract:Weakly supervised person search aims to perform joint pedestrian detection and re-identification (re-id) with only person bounding-box annotations. Recently, the idea of contrastive learning is initially applied to weakly supervised person search, where two common contrast strategies are memory-based contrast and intra-image contrast. We argue that current intra-image contrast is shallow, which suffers from spatial-level and occlusion-level variance. In this paper, we present a novel deep intra-image contrastive learning using a Siamese network. Two key modules are spatial-invariant contrast (SIC) and occlusion-invariant contrast (OIC). SIC performs many-to-one contrasts between two branches of Siamese network and dense prediction contrasts in one branch of Siamese network. With these many-to-one and dense contrasts, SIC tends to learn discriminative scale-invariant and location-invariant features to solve spatial-level variance. OIC enhances feature consistency with the masking strategy to learn occlusion-invariant features. Extensive experiments are performed on two person search datasets CUHK-SYSU and PRW, respectively. Our method achieves a state-of-the-art performance among weakly supervised one-step person search approaches. We hope that our simple intra-image contrastive learning can provide more paradigms on weakly supervised person search. The source code is available at \url{https://github.com/jiabeiwangTJU/DICL}.
Abstract:Existing deep convolutional neural networks (CNNs) generate massive interlayer feature data during network inference. To maintain real-time processing in embedded systems, large on-chip memory is required to buffer the interlayer feature maps. In this paper, we propose an efficient hardware accelerator with an interlayer feature compression technique to significantly reduce the required on-chip memory size and off-chip memory access bandwidth. The accelerator compresses interlayer feature maps through transforming the stored data into frequency domain using hardware-implemented 8x8 discrete cosine transform (DCT). The high-frequency components are removed after the DCT through quantization. Sparse matrix compression is utilized to further compress the interlayer feature maps. The on-chip memory allocation scheme is designed to support dynamic configuration of the feature map buffer size and scratch pad size according to different network-layer requirements. The hardware accelerator combines compression, decompression, and CNN acceleration into one computing stream, achieving minimal compressing and processing delay. A prototype accelerator is implemented on an FPGA platform and also synthesized in TSMC 28-nm COMS technology. It achieves 403GOPS peak throughput and 1.4x~3.3x interlayer feature map reduction by adding light hardware area overhead, making it a promising hardware accelerator for intelligent IoT devices.