Abstract:As intelligent reflecting surface (IRS) has emerged as a new and promising technology capable of configuring the wireless environment favorably, channel estimation for IRS-assisted multiple-input multiple-output (MIMO) systems has garnered extensive attention in recent years. While various algorithms have been proposed to address this challenge, there is a lack of rigorous theoretical error analysis. This paper aims to address this gap by providing theoretical guarantees in terms of stable recovery of channel matrices for noisy measurements. We begin by establishing the equivalence between IRS-assisted MIMO systems and a compact tensor train (TT)-based tensor-on-tensor (ToT) regression. Building on this equivalence, we then investigate the restricted isometry property (RIP) for complex-valued subgaussian measurements. Our analysis reveals that successful recovery hinges on the relationship between the number of user terminals (in the uplink scenario) or base stations (in the downlink scenario) and the number of time slots during which channel matrices remain invariant. Utilizing the RIP condition, we analyze the theoretical recovery error for the solution to a constrained least-squares optimization problem, including upper error bound and minimax lower bound, demonstrating that the error decreases inversely with the number of time slots and increases proportionally with the number of unknown elements in the channel matrices. In addition, we extend our error analysis to two more specialized IRS-assisted MIMO systems, incorporating low-rank channel matrices or an unknown IRS. Furthermore, we explore a multi-hop IRS scheme and analyze the corresponding recovery errors. Finally, we introduce and implement two nonconvex optimization algorithms--alternating least squares and alternating gradient descent--to validate our conclusions through simulations.
Abstract:Generative models aim to produce synthetic data indistinguishable from real distributions, but iterative training on self-generated data can lead to \emph{model collapse (MC)}, where performance degrades over time. In this work, we provide the first theoretical analysis of MC in Rectified Flow by framing it within the context of Denoising Autoencoders (DAEs). We show that when DAE models are trained on recursively generated synthetic data with small noise variance, they suffer from MC with progressive diminishing generation quality. To address this MC issue, we propose methods that strategically incorporate real data into the training process, even when direct noise-image pairs are unavailable. Our proposed techniques, including Reverse Collapse-Avoiding (RCA) Reflow and Online Collapse-Avoiding Reflow (OCAR), effectively prevent MC while maintaining the efficiency benefits of Rectified Flow. Extensive experiments on standard image datasets demonstrate that our methods not only mitigate MC but also improve sampling efficiency, leading to higher-quality image generation with fewer sampling steps.
Abstract:The process of reconstructing quantum states from experimental measurements, accomplished through quantum state tomography (QST), plays a crucial role in verifying and benchmarking quantum devices. A key challenge of QST is to find out how the accuracy of the reconstruction depends on the number of state copies used in the measurements. When multiple measurement settings are used, the total number of state copies is determined by multiplying the number of measurement settings with the number of repeated measurements for each setting. Due to statistical noise intrinsic to quantum measurements, a large number of repeated measurements is often used in practice. However, recent studies have shown that even with single-sample measurements--where only one measurement sample is obtained for each measurement setting--high accuracy QST can still be achieved with a sufficiently large number of different measurement settings. In this paper, we establish a theoretical understanding of the trade-off between the number of measurement settings and the number of repeated measurements per setting in QST. Our focus is primarily on low-rank density matrix recovery using Pauli measurements. We delve into the global landscape underlying the low-rank QST problem and demonstrate that the joint consideration of measurement settings and repeated measurements ensures a bounded recovery error for all second-order critical points, to which optimization algorithms tend to converge. This finding suggests the advantage of minimizing the number of repeated measurements per setting when the total number of state copies is held fixed. Additionally, we prove that the Wirtinger gradient descent algorithm can converge to the region of second-order critical points with a linear convergence rate. We have also performed numerical experiments to support our theoretical findings.
Abstract:Leveraging multimodal data to drive breakthroughs in e-commerce applications through Multimodal Foundation Models (MFMs) is gaining increasing attention from the research community. However, there are significant challenges that hinder the optimal use of multimodal e-commerce data by foundation models: (1) the scarcity of large-scale, high-quality multimodal benchmark datasets; and (2) the lack of effective multimodal information integration methods. To address these challenges, in this paper, we introduce MMECInstruct, the first-ever, large-scale, and high-quality multimodal instruction dataset for e-commerce. We also develop CASLIE, a simple, lightweight, yet effective framework for integrating multimodal information for e-commerce. Leveraging MMECInstruct, we fine-tune a series of e-commerce MFMs within CASLIE, denoted as CASLIE models. Our comprehensive evaluation demonstrates that CASLIE models substantially outperform 5 categories of advanced baseline models in the in-domain evaluation. Moreover, CASLIE models show strong generalizability to out-of-domain settings. MMECInstruct and CASLIE models are publicly accessible through https://ninglab.github.io/CASLIE/.
Abstract:Tensor train (TT) decomposition represents an $N$-order tensor using $O(N)$ matrices (i.e., factors) of small dimensions, achieved through products among these factors. Due to its compact representation, TT decomposition has found wide applications, including various tensor recovery problems in signal processing and quantum information. In this paper, we study the problem of reconstructing a TT format tensor from measurements that are contaminated by outliers with arbitrary values. Given the vulnerability of smooth formulations to corruptions, we use an $\ell_1$ loss function to enhance robustness against outliers. We first establish the $\ell_1/\ell_2$-restricted isometry property (RIP) for Gaussian measurement operators, demonstrating that the information in the TT format tensor can be preserved using a number of measurements that grows linearly with $N$. We also prove the sharpness property for the $\ell_1$ loss function optimized over TT format tensors. Building on the $\ell_1/\ell_2$-RIP and sharpness property, we then propose two complementary methods to recover the TT format tensor from the corrupted measurements: the projected subgradient method (PSubGM), which optimizes over the entire tensor, and the factorized Riemannian subgradient method (FRSubGM), which optimizes directly over the factors. Compared to PSubGM, the factorized approach FRSubGM significantly reduces the memory cost at the expense of a slightly slower convergence rate. Nevertheless, we show that both methods, with diminishing step sizes, converge linearly to the ground-truth tensor given an appropriate initialization, which can be obtained by a truncated spectral method.
Abstract:Quantum state tomography (QST) remains the gold standard for benchmarking and verifying quantum devices. A recent study has proved that, with Haar random projective measurements, only a $O(n^3)$ number of state copies is required to guarantee bounded recovery error of an matrix product operator (MPO) state of qubits $n$. While this result provides a formal evidence that quantum states with an efficient classical representation can be reconstructed with an efficient number of state copies, the number of state copies required is still significantly larger than the number of independent parameters in the classical representation. In this paper, we attempt to narrow this gap and study whether the number of state copies can saturate the information theoretic bound (i.e., $O(n)$, the number of parameters in the MPOs) using physical quantum measurements. We answer this question affirmatively by using a class of Informationally Complete Positive Operator-Valued Measures (IC-POVMs), including symmetric IC-POVMs (SIC-POVMs) and spherical $t$-designs. For SIC-POVMs and (approximate) spherical 2-designs, we show that the number of state copies to guarantee bounded recovery error of an MPO state with a constrained least-squares estimator depends on the probability distribution of the MPO under the POVM but scales only linearly with $n$ when the distribution is approximately uniform. For spherical $t$-designs with $t\ge3$, we prove that only a number of state copies proportional to the number of independent parameters in the MPO is needed for a guaranteed recovery of any state represented by an MPO. Moreover, we propose a projected gradient descent (PGD) algorithm to solve the constrained least-squares problem and show that it can efficiently find an estimate with bounded recovery error when appropriately initialized.
Abstract:Analyzing the similarity of internal representations within and across different models has been an important technique for understanding the behavior of deep neural networks. Most existing methods for analyzing the similarity between representations of high dimensions, such as those based on Canonical Correlation Analysis (CCA) and widely used Centered Kernel Alignment (CKA), rely on statistical properties of the representations for a set of data points. In this paper, we focus on transformer models and study the similarity of representations between the hidden layers of individual transformers. In this context, we show that a simple sample-wise cosine similarity metric is capable of capturing the similarity and aligns with the complicated CKA. Our experimental results on common transformers reveal that representations across layers are positively correlated, albeit the similarity decreases when layers are far apart. We then propose an aligned training approach to enhance the similarity between internal representations, with trained models that enjoy the following properties: (1) the last-layer classifier can be directly applied right after any hidden layers, yielding intermediate layer accuracies much higher than those under standard training, (2) the layer-wise accuracies monotonically increase and reveal the minimal depth needed for the given task, (3) when served as multi-exit models, they achieve on-par performance with standard multi-exit architectures which consist of additional classifiers designed for early exiting in shallow layers. To our knowledge, our work is the first to show that one common classifier is sufficient for multi-exit models. We conduct experiments on both vision and NLP tasks to demonstrate the performance of the proposed aligned training.
Abstract:Recently, a tensor-on-tensor (ToT) regression model has been proposed to generalize tensor recovery, encompassing scenarios like scalar-on-tensor regression and tensor-on-vector regression. However, the exponential growth in tensor complexity poses challenges for storage and computation in ToT regression. To overcome this hurdle, tensor decompositions have been introduced, with the tensor train (TT)-based ToT model proving efficient in practice due to reduced memory requirements, enhanced computational efficiency, and decreased sampling complexity. Despite these practical benefits, a disparity exists between theoretical analysis and real-world performance. In this paper, we delve into the theoretical and algorithmic aspects of the TT-based ToT regression model. Assuming the regression operator satisfies the restricted isometry property (RIP), we conduct an error analysis for the solution to a constrained least-squares optimization problem. This analysis includes upper error bound and minimax lower bound, revealing that such error bounds polynomially depend on the order $N+M$. To efficiently find solutions meeting such error bounds, we propose two optimization algorithms: the iterative hard thresholding (IHT) algorithm (employing gradient descent with TT-singular value decomposition (TT-SVD)) and the factorization approach using the Riemannian gradient descent (RGD) algorithm. When RIP is satisfied, spectral initialization facilitates proper initialization, and we establish the linear convergence rate of both IHT and RGD.
Abstract:The maximal coding rate reduction (MCR$^2$) objective for learning structured and compact deep representations is drawing increasing attention, especially after its recent usage in the derivation of fully explainable and highly effective deep network architectures. However, it lacks a complete theoretical justification: only the properties of its global optima are known, and its global landscape has not been studied. In this work, we give a complete characterization of the properties of all its local and global optima, as well as other types of critical points. Specifically, we show that each (local or global) maximizer of the MCR$^2$ problem corresponds to a low-dimensional, discriminative, and diverse representation, and furthermore, each critical point of the objective is either a local maximizer or a strict saddle point. Such a favorable landscape makes MCR$^2$ a natural choice of objective for learning diverse and discriminative representations via first-order optimization methods. To validate our theoretical findings, we conduct extensive experiments on both synthetic and real data sets.
Abstract:Existing angle-based contour descriptors suffer from lossy representation for non-starconvex shapes. By and large, this is the result of the shape being registered with a single global inner center and a set of radii corresponding to a polar coordinate parameterization. In this paper, we propose AdaContour, an adaptive contour descriptor that uses multiple local representations to desirably characterize complex shapes. After hierarchically encoding object shapes in a training set and constructing a contour matrix of all subdivided regions, we compute a robust low-rank robust subspace and approximate each local contour by linearly combining the shared basis vectors to represent an object. Experiments show that AdaContour is able to represent shapes more accurately and robustly than other descriptors while retaining effectiveness. We validate AdaContour by integrating it into off-the-shelf detectors to enable instance segmentation which demonstrates faithful performance. The code is available at https://github.com/tding1/AdaContour.