Abstract:Adversarial attacks have gained traction in order to identify potential vulnerabilities in neural ranking models (NRMs), but current attack methods often introduce grammatical errors, nonsensical expressions, or incoherent text fragments, which can be easily detected. Additionally, current methods rely heavily on the use of a well-imitated surrogate NRM to guarantee the attack effect, which makes them difficult to use in practice. To address these issues, we propose a framework called Imperceptible DocumEnt Manipulation (IDEM) to produce adversarial documents that are less noticeable to both algorithms and humans. IDEM instructs a well-established generative language model, such as BART, to generate connection sentences without introducing easy-to-detect errors, and employs a separate position-wise merging strategy to balance relevance and coherence of the perturbed text. Experimental results on the popular MS MARCO benchmark demonstrate that IDEM can outperform strong baselines while preserving fluency and correctness of the target documents as evidenced by automatic and human evaluations. Furthermore, the separation of adversarial text generation from the surrogate NRM makes IDEM more robust and less affected by the quality of the surrogate NRM.
Abstract:Knowledge graph completion (KGC) aims to infer missing knowledge triples based on known facts in a knowledge graph. Current KGC research mostly follows an entity ranking protocol, wherein the effectiveness is measured by the predicted rank of a masked entity in a test triple. The overall performance is then given by a micro(-average) metric over all individual answer entities. Due to the incomplete nature of the large-scale knowledge bases, such an entity ranking setting is likely affected by unlabelled top-ranked positive examples, raising questions on whether the current evaluation protocol is sufficient to guarantee a fair comparison of KGC systems. To this end, this paper presents a systematic study on whether and how the label sparsity affects the current KGC evaluation with the popular micro metrics. Specifically, inspired by the TREC paradigm for large-scale information retrieval (IR) experimentation, we create a relatively "complete" judgment set based on a sample from the popular FB15k-237 dataset following the TREC pooling method. According to our analysis, it comes as a surprise that switching from the original labels to our "complete" labels results in a drastic change of system ranking of a variety of 13 popular KGC models in terms of micro metrics. Further investigation indicates that the IR-like macro(-average) metrics are more stable and discriminative under different settings, meanwhile, less affected by label sparsity. Thus, for KGC evaluation, we recommend conducting TREC-style pooling to balance between human efforts and label completeness, and reporting also the IR-like macro metrics to reflect the ranking nature of the KGC task.
Abstract:Automatic dialogue coherence evaluation has attracted increasing attention and is crucial for developing promising dialogue systems. However, existing metrics have two major limitations: (a) they are mostly trained in a simplified two-level setting (coherent vs. incoherent), while humans give Likert-type multi-level coherence scores, dubbed as "quantifiable"; (b) their predicted coherence scores cannot align with the actual human rating standards due to the absence of human guidance during training. To address these limitations, we propose Quantifiable Dialogue Coherence Evaluation (QuantiDCE), a novel framework aiming to train a quantifiable dialogue coherence metric that can reflect the actual human rating standards. Specifically, QuantiDCE includes two training stages, Multi-Level Ranking (MLR) pre-training and Knowledge Distillation (KD) fine-tuning. During MLR pre-training, a new MLR loss is proposed for enabling the model to learn the coarse judgement of coherence degrees. Then, during KD fine-tuning, the pretrained model is further finetuned to learn the actual human rating standards with only very few human-annotated data. To advocate the generalizability even with limited fine-tuning data, a novel KD regularization is introduced to retain the knowledge learned at the pre-training stage. Experimental results show that the model trained by QuantiDCE presents stronger correlations with human judgements than the other state-of-the-art metrics.
Abstract:BERT-based text ranking models have dramatically advanced the state-of-the-art in ad-hoc retrieval, wherein most models tend to consider individual query-document pairs independently. In the mean time, the importance and usefulness to consider the cross-documents interactions and the query-specific characteristics in a ranking model have been repeatedly confirmed, mostly in the context of learning to rank. The BERT-based ranking model, however, has not been able to fully incorporate these two types of ranking context, thereby ignoring the inter-document relationships from the ranking and the differences among queries. To mitigate this gap, in this work, an end-to-end transformer-based ranking model, named Co-BERT, has been proposed to exploit several BERT architectures to calibrate the query-document representations using pseudo relevance feedback before modeling the relevance of a group of documents jointly. Extensive experiments on two standard test collections confirm the effectiveness of the proposed model in improving the performance of text re-ranking over strong fine-tuned BERT-Base baselines. We plan to make our implementation open source to enable further comparisons.
Abstract:Automatically evaluating dialogue coherence is a challenging but high-demand ability for developing high-quality open-domain dialogue systems. However, current evaluation metrics consider only surface features or utterance-level semantics, without explicitly considering the fine-grained topic transition dynamics of dialogue flows. Here, we first consider that the graph structure constituted with topics in a dialogue can accurately depict the underlying communication logic, which is a more natural way to produce persuasive metrics. Capitalized on the topic-level dialogue graph, we propose a new evaluation metric GRADE, which stands for Graph-enhanced Representations for Automatic Dialogue Evaluation. Specifically, GRADE incorporates both coarse-grained utterance-level contextualized representations and fine-grained topic-level graph representations to evaluate dialogue coherence. The graph representations are obtained by reasoning over topic-level dialogue graphs enhanced with the evidence from a commonsense graph, including k-hop neighboring representations and hop-attention weights. Experimental results show that our GRADE significantly outperforms other state-of-the-art metrics on measuring diverse dialogue models in terms of the Pearson and Spearman correlations with human judgements. Besides, we release a new large-scale human evaluation benchmark to facilitate future research on automatic metrics.
Abstract:Target-guided open-domain conversation aims to proactively and naturally guide a dialogue agent or human to achieve specific goals, topics or keywords during open-ended conversations. Existing methods mainly rely on single-turn datadriven learning and simple target-guided strategy without considering semantic or factual knowledge relations among candidate topics/keywords. This results in poor transition smoothness and low success rate. In this work, we adopt a structured approach that controls the intended content of system responses by introducing coarse-grained keywords, attains smooth conversation transition through turn-level supervised learning and knowledge relations between candidate keywords, and drives an conversation towards an specified target with discourse-level guiding strategy. Specially, we propose a novel dynamic knowledge routing network (DKRN) which considers semantic knowledge relations among candidate keywords for accurate next topic prediction of next discourse. With the help of more accurate keyword prediction, our keyword-augmented response retrieval module can achieve better retrieval performance and more meaningful conversations. Besides, we also propose a novel dual discourse-level target-guided strategy to guide conversations to reach their goals smoothly with higher success rate. Furthermore, to push the research boundary of target-guided open-domain conversation to match real-world scenarios better, we introduce a new large-scale Chinese target-guided open-domain conversation dataset (more than 900K conversations) crawled from Sina Weibo. Quantitative and human evaluations show our method can produce meaningful and effective target-guided conversations, significantly improving over other state-of-the-art methods by more than 20% in success rate and more than 0.6 in average smoothness score.
Abstract:We present the EpiReader, a novel model for machine comprehension of text. Machine comprehension of unstructured, real-world text is a major research goal for natural language processing. Current tests of machine comprehension pose questions whose answers can be inferred from some supporting text, and evaluate a model's response to the questions. The EpiReader is an end-to-end neural model comprising two components: the first component proposes a small set of candidate answers after comparing a question to its supporting text, and the second component formulates hypotheses using the proposed candidates and the question, then reranks the hypotheses based on their estimated concordance with the supporting text. We present experiments demonstrating that the EpiReader sets a new state-of-the-art on the CNN and Children's Book Test machine comprehension benchmarks, outperforming previous neural models by a significant margin.
Abstract:Understanding unstructured text is a major goal within natural language processing. Comprehension tests pose questions based on short text passages to evaluate such understanding. In this work, we investigate machine comprehension on the challenging {\it MCTest} benchmark. Partly because of its limited size, prior work on {\it MCTest} has focused mainly on engineering better features. We tackle the dataset with a neural approach, harnessing simple neural networks arranged in a parallel hierarchy. The parallel hierarchy enables our model to compare the passage, question, and answer from a variety of trainable perspectives, as opposed to using a manually designed, rigid feature set. Perspectives range from the word level to sentence fragments to sequences of sentences; the networks operate only on word-embedding representations of text. When trained with a methodology designed to help cope with limited training data, our Parallel-Hierarchical model sets a new state of the art for {\it MCTest}, outperforming previous feature-engineered approaches slightly and previous neural approaches by a significant margin (over 15\% absolute).