Abstract:Sleep stage classification is crucial for detecting patients' health conditions. Existing models, which mainly use Convolutional Neural Networks (CNN) for modelling Euclidean data and Graph Convolution Networks (GNN) for modelling non-Euclidean data, are unable to consider the heterogeneity and interactivity of multimodal data as well as the spatial-temporal correlation simultaneously, which hinders a further improvement of classification performance. In this paper, we propose a dynamic learning framework STHL, which introduces hypergraph to encode spatial-temporal data for sleep stage classification. Hypergraphs can construct multi-modal/multi-type data instead of using simple pairwise between two subjects. STHL creates spatial and temporal hyperedges separately to build node correlations, then it conducts type-specific hypergraph learning process to encode the attributes into the embedding space. Extensive experiments show that our proposed STHL outperforms the state-of-the-art models in sleep stage classification tasks.
Abstract:Graph neural network (GNN) has gained increasing popularity in recent years owing to its capability and flexibility in modeling complex graph structure data. Among all graph learning methods, hypergraph learning is a technique for exploring the implicit higher-order correlations when training the embedding space of the graph. In this paper, we propose a hypergraph learning framework named LFH that is capable of dynamic hyperedge construction and attentive embedding update utilizing the heterogeneity attributes of the graph. Specifically, in our framework, the high-quality features are first generated by the pairwise fusion strategy that utilizes explicit graph structure information when generating initial node embedding. Afterwards, a hypergraph is constructed through the dynamic grouping of implicit hyperedges, followed by the type-specific hypergraph learning process. To evaluate the effectiveness of our proposed framework, we conduct comprehensive experiments on several popular datasets with eleven state-of-the-art models on both node classification and link prediction tasks, which fall into categories of homogeneous pairwise graph learning, heterogeneous pairwise graph learning, and hypergraph learning. The experiment results demonstrate a significant performance gain (average 12.5% in node classification and 13.3% in link prediction) compared with recent state-of-the-art methods.
Abstract:Heterogeneous graph neural network has unleashed great potential on graph representation learning and shown superior performance on downstream tasks such as node classification and clustering. Existing heterogeneous graph learning networks are primarily designed to either rely on pre-defined meta-paths or use attention mechanisms for type-specific attentive message propagation on different nodes/edges, incurring many customization efforts and computational costs. To this end, we design a relation-centered Pooling and Convolution for Heterogeneous Graph learning Network, namely PC-HGN, to enable relation-specific sampling and cross-relation convolutions, from which the structural heterogeneity of the graph can be better encoded into the embedding space through the adaptive training process. We evaluate the performance of the proposed model by comparing with state-of-the-art graph learning models on three different real-world datasets, and the results show that PC-HGN consistently outperforms all the baseline and improves the performance maximumly up by 17.8%.
Abstract:Spatial-temporal data contains rich information and has been widely studied in recent years due to the rapid development of relevant applications in many fields. For instance, medical institutions often use electrodes attached to different parts of a patient to analyse the electorencephal data rich with spatial and temporal features for health assessment and disease diagnosis. Existing research has mainly used deep learning techniques such as convolutional neural network (CNN) or recurrent neural network (RNN) to extract hidden spatial-temporal features. Yet, it is challenging to incorporate both inter-dependencies spatial information and dynamic temporal changes simultaneously. In reality, for a model that leverages these spatial-temporal features to fulfil complex prediction tasks, it often requires a colossal amount of training data in order to obtain satisfactory model performance. Considering the above-mentioned challenges, we propose an adaptive federated relevance framework, namely FedRel, for spatial-temporal graph learning in this paper. After transforming the raw spatial-temporal data into high quality features, the core Dynamic Inter-Intra Graph (DIIG) module in the framework is able to use these features to generate the spatial-temporal graphs capable of capturing the hidden topological and long-term temporal correlation information in these graphs. To improve the model generalization ability and performance while preserving the local data privacy, we also design a relevance-driven federated learning module in our framework to leverage diverse data distributions from different participants with attentive aggregations of their models.
Abstract:Using a pre-trained language model (i.e. BERT) to apprehend source codes has attracted increasing attention in the natural language processing community. However, there are several challenges when it comes to applying these language models to solve programming language (PL) related problems directly, the significant one of which is the lack of domain knowledge issue that substantially deteriorates the model's performance. To this end, we propose the AstBERT model, a pre-trained language model aiming to better understand the PL using the abstract syntax tree (AST). Specifically, we collect a colossal amount of source codes (both java and python) from GitHub and incorporate the contextual code knowledge into our model through the help of code parsers, in which AST information of the source codes can be interpreted and integrated. We verify the performance of the proposed model on code information extraction and code search tasks, respectively. Experiment results show that our AstBERT model achieves state-of-the-art performance on both downstream tasks (with 96.4% for code information extraction task, and 57.12% for code search task).
Abstract:Graph representation learning has drawn increasing attention in recent years, especially for learning the low dimensional embedding at both node and graph level for classification and recommendations tasks. To enable learning the representation on the large-scale graph data in the real world, numerous research has focused on developing different sampling strategies to facilitate the training process. Herein, we propose an adaptive Graph Policy-driven Sampling model (GPS), where the influence of each node in the local neighborhood is realized through the adaptive correlation calculation. Specifically, the selections of the neighbors are guided by an adaptive policy algorithm, contributing directly to the message aggregation, node embedding updating, and graph level readout steps. We then conduct comprehensive experiments against baseline methods on graph classification tasks from various perspectives. Our proposed model outperforms the existing ones by 3%-8% on several vital benchmarks, achieving state-of-the-art performance in real-world datasets.
Abstract:We present a spatial-temporal federated learning framework for graph neural networks, namely STFL. The framework explores the underlying correlation of the input spatial-temporal data and transform it to both node features and adjacency matrix. The federated learning setting in the framework ensures data privacy while achieving a good model generalization. Experiments results on the sleep stage dataset, ISRUC_S3, illustrate the effectiveness of STFL on graph prediction tasks.