Abstract:Large language models (LLMs) have demonstrated impressive success in a wide range of natural language processing (NLP) tasks due to their extensive general knowledge of the world. Recent works discovered that the performance of LLMs is heavily dependent on the input prompt. However, prompt engineering is usually done manually in a trial-and-error fashion, which can be labor-intensive and challenging in order to find the optimal prompts. To address these problems and unleash the utmost potential of LLMs, we propose a novel LLMs-agnostic framework for prompt optimization, namely GRL-Prompt, which aims to automatically construct optimal prompts via reinforcement learning (RL) in an end-to-end manner. To provide structured action/state representation for optimizing prompts, we construct a knowledge graph (KG) that better encodes the correlation between the user query and candidate in-context examples. Furthermore, a policy network is formulated to generate the optimal action by selecting a set of in-context examples in a rewardable order to construct the prompt. Additionally, the embedding-based reward shaping is utilized to stabilize the RL training process. The experimental results show that GRL-Prompt outperforms recent state-of-the-art methods, achieving an average increase of 0.10 in ROUGE-1, 0.07 in ROUGE-2, 0.07 in ROUGE-L, and 0.05 in BLEU.
Abstract:The accurate diagnosis of machine breakdowns is crucial for maintaining operational safety in smart manufacturing. Despite the promise shown by deep learning in automating fault identification, the scarcity of labeled training data, particularly for equipment failure instances, poses a significant challenge. This limitation hampers the development of robust classification models. Existing methods like model-agnostic meta-learning (MAML) do not adequately address variable working conditions, affecting knowledge transfer. To address these challenges, a Related Task Aware Curriculum Meta-learning (RT-ACM) enhanced fault diagnosis framework is proposed in this paper, inspired by human cognitive learning processes. RT-ACM improves training by considering the relevance of auxiliary working conditions, adhering to the principle of ``paying more attention to more relevant knowledge", and focusing on ``easier first, harder later" curriculum sampling. This approach aids the meta-learner in achieving a superior convergence state. Extensive experiments on two real-world datasets demonstrate the superiority of RT-ACM framework.
Abstract:Most existing point-of-interest (POI) recommenders aim to capture user preference by employing city-level user historical check-ins, thus facilitating users' exploration of the city. However, the scarcity of city-level user check-ins brings a significant challenge to user preference learning. Although prior studies attempt to mitigate this challenge by exploiting various context information, e.g., spatio-temporal information, they ignore to transfer the knowledge (i.e., common behavioral pattern) from other relevant cities (i.e., auxiliary cities). In this paper, we investigate the effect of knowledge distilled from auxiliary cities and thus propose a novel Meta-learning Enhanced next POI Recommendation framework (MERec). The MERec leverages the correlation of check-in behaviors among various cities into the meta-learning paradigm to help infer user preference in the target city, by holding the principle of "paying more attention to more correlated knowledge". Particularly, a city-level correlation strategy is devised to attentively capture common patterns among cities, so as to transfer more relevant knowledge from more correlated cities. Extensive experiments verify the superiority of the proposed MERec against state-of-the-art algorithms.