Abstract:LoRA (Low-Rank Adaptation) is a widely used model fine-tuning method. In fine-tuning, the law among model performance, model parameters, and data complexity has been a focal issue in the field. Existing methods often leverage external metrics (such as cross-entropy or perplexity) to evaluate model performance. In the fine-tuning process for large models, two types of knowledge are typically involved: the frozen, general knowledge acquired by the model during pre-training and the new knowledge learned through the LoRA module from the current data. Generally, the less LoRA's learned knowledge relies on the large model, the more it captures the specific knowledge of new data, thereby enhancing its adaptability to new tasks. However, external metrics do not readily capture the dependency relationship between these two types of knowledge. Therefore, we designed an internal metric based on the Mutual Information Upper Bound (MIUB) theory to investigate the scaling law of large-model LoRA fine-tuning. In our experiments, we validated this approach on benchmark datasets, using the Llama3-8B and Phi3-3B models. The results show that the proposed MIUB metric aligns more accurately and stably with the scaling law of LoRA fine-tuning compared to cross-entropy and perplexity.
Abstract:Transformer-based large language models exhibit groundbreaking capabilities, but their storage and computational costs are prohibitively high, limiting their application in resource-constrained scenarios. An effective approach is to eliminate redundant model parameters and computational costs while incorporating efficient expert-derived knowledge structures to achieve a balance between compression and performance. Therefore, we propose the \textit{Sememe Entanglement Encoding (SEE)} algorithm. Guided by expert prior knowledge, the model is compressed through the low-rank approximation idea. In Entanglement Embedding, basic semantic units such as sememes are represented as low-dimensional vectors, and then reconstructed into high-dimensional word embeddings through the combination of generalized quantum entanglement. We adapt the Sememe Entanglement Encoding algorithm to transformer-based models of different magnitudes. Experimental results indicate that our approach achieves stable performance while compressing model parameters and computational costs.
Abstract:In causal inference, generalization capability refers to the ability to conduct causal inference methods on new data to estimate the causal-effect between unknown phenomenon, which is crucial for expanding the boundaries of knowledge. Studies have evaluated the causal inference capabilities of Large Language Models (LLMs) concerning known phenomena, yet the generalization capabilities of LLMs concerning unseen phenomena remain unexplored. In this paper, we selected four tasks: Causal Path Discovery (CP), Backdoor Adjustment (BA), Factual Inference (FI), and Counterfactual Inference (CI) as representatives of causal inference tasks. To generate evaluation questions about previously unseen phenomena in new data on the four tasks, we propose a benchmark generation framework, which employs randomly generated graphs and node names to formulate questions within hypothetical new causal scenarios. Based on this framework, we compile a benchmark dataset of varying levels of question complexity. We extensively tested the generalization capabilities of five leading LLMs across four tasks. Experiment results reveal that while LLMs exhibit good generalization performance in solving simple CP, FI, and complex CI questions, they encounter difficulties when tackling BA questions and face obvious performance fluctuations as the problem complexity changes. Furthermore, when the names of phenomena incorporate existing terms, even if these names are entirely novel, their generalization performance can still be hindered by interference from familiar terms.
Abstract:Role-playing systems powered by large language models (LLMs) have become increasingly influential in emotional communication applications. However, these systems are susceptible to character hallucinations, where the model deviates from predefined character roles and generates responses that are inconsistent with the intended persona. This paper presents the first systematic analysis of character hallucination from an attack perspective, introducing the RoleBreak framework. Our framework identifies two core mechanisms-query sparsity and role-query conflict-as key factors driving character hallucination. Leveraging these insights, we construct a novel dataset, RoleBreakEval, to evaluate existing hallucination mitigation techniques. Our experiments reveal that even enhanced models trained to minimize hallucination remain vulnerable to attacks. To address these vulnerabilities, we propose a novel defence strategy, the Narrator Mode, which generates supplemental context through narration to mitigate role-query conflicts and improve query generalization. Experimental results demonstrate that Narrator Mode significantly outperforms traditional refusal-based strategies by reducing hallucinations, enhancing fidelity to character roles and queries, and improving overall narrative coherence.
Abstract:Personalized Dialogue Generation (PDG) aims to create coherent responses according to roles or personas. Traditional PDG relies on external role data, which can be scarce and raise privacy concerns. Approaches address these issues by extracting role information from dialogue history, which often fail to generically model roles in continuous space. To overcome these limitations, we introduce a novel framework \textbf{MO}dels \textbf{R}oles from \textbf{P}ersonalized Dialogue \textbf{H}istory by \textbf{E}xploring and \textbf{U}tilizing Latent \textbf{S}pace (MORPHEUS) through a three-stage training process. Specifically, we create a persona codebook to represent roles in latent space compactly, and this codebook is used to construct a posterior distribution of role information. This method enables the model to generalize across roles, allowing the generation of personalized dialogues even for unseen roles. Experiments on both Chinese and English datasets demonstrate that MORPHEUS enhances the extraction of role information, and improves response generation without external role data. Additionally, MORPHEUS can be considered an efficient fine-tuning for large language models.
Abstract:Recent researches indicate that Pre-trained Large Language Models (LLMs) possess cognitive constructs similar to those observed in humans, prompting researchers to investigate the cognitive aspects of LLMs. This paper focuses on explicit and implicit social bias, a distinctive two-level cognitive construct in psychology. It posits that individuals' explicit social bias, which is their conscious expression of bias in the statements, may differ from their implicit social bias, which represents their unconscious bias. We propose a two-stage approach and discover a parallel phenomenon in LLMs known as "re-judge inconsistency" in social bias. In the initial stage, the LLM is tasked with automatically completing statements, potentially incorporating implicit social bias. However, in the subsequent stage, the same LLM re-judges the biased statement generated by itself but contradicts it. We propose that this re-judge inconsistency can be similar to the inconsistency between human's unaware implicit social bias and their aware explicit social bias. Experimental investigations on ChatGPT and GPT-4 concerning common gender biases examined in psychology corroborate the highly stable nature of the re-judge inconsistency. This finding may suggest that diverse cognitive constructs emerge as LLMs' capabilities strengthen. Consequently, leveraging psychological theories can provide enhanced insights into the underlying mechanisms governing the expressions of explicit and implicit constructs in LLMs.
Abstract:Syntax has been proven to be remarkably effective in neural machine translation (NMT). Previous models obtained syntax information from syntactic parsing tools and integrated it into NMT models to improve translation performance. In this work, we propose a method to incorporate syntax information into a complex-valued Encoder-Decoder architecture. The proposed model jointly learns word-level and syntax-level attention scores from the source side to the target side using an attention mechanism. Importantly, it is not dependent on specific network architectures and can be directly integrated into any existing sequence-to-sequence (Seq2Seq) framework. The experimental results demonstrate that the proposed method can bring significant improvements in BLEU scores on two datasets. In particular, the proposed method achieves a greater improvement in BLEU scores in translation tasks involving language pairs with significant syntactic differences.
Abstract:The personalized dialogue explores the consistent relationship between dialogue generation and personality. Existing personalized dialogue agents model persona profiles from three resources: sparse or dense persona descriptions and dialogue histories. However, sparse structured persona attributes are explicit but uninformative, dense persona texts contain rich persona descriptions with much noise, and dialogue history query is both noisy and uninformative for persona modeling. In this work, we combine the advantages of the three resources to obtain a richer and more accurate persona. We design a Contrastive Latent Variable-based model (CLV) that clusters the dense persona descriptions into sparse categories, which are combined with the history query to generate personalized responses. Experimental results on Chinese and English datasets demonstrate our model's superiority in personalization.
Abstract:Masked Language Models (MLMs) have been successful in many natural language processing tasks. However, real-world stereotype biases are likely to be reflected in MLMs due to their learning from large text corpora. Most of the evaluation metrics proposed in the past adopt different masking strategies, designed with the log-likelihood of MLMs. They lack holistic considerations such as variance for stereotype bias and anti-stereotype bias samples. In this paper, the log-likelihoods of stereotype bias and anti-stereotype bias samples output by MLMs are considered Gaussian distributions. Two evaluation metrics, Kullback Leibler Divergence Score (KLDivS) and Jensen Shannon Divergence Score (JSDivS) are proposed to evaluate social biases in MLMs The experimental results on the public datasets StereoSet and CrowS-Pairs demonstrate that KLDivS and JSDivS are more stable and interpretable compared to the metrics proposed in the past.
Abstract:Empathetic dialogue is a human-like behavior that requires the perception of both affective factors (e.g., emotion status) and cognitive factors (e.g., cause of the emotion). Besides concerning emotion status in early work, the latest approaches study emotion causes in empathetic dialogue. These approaches focus on understanding and duplicating emotion causes in the context to show empathy for the speaker. However, instead of only repeating the contextual causes, the real empathic response often demonstrate a logical and emotion-centered transition from the causes in the context to those in the responses. In this work, we propose an emotion cause transition graph to explicitly model the natural transition of emotion causes between two adjacent turns in empathetic dialogue. With this graph, the concept words of the emotion causes in the next turn can be predicted and used by a specifically designed concept-aware decoder to generate the empathic response. Automatic and human experimental results on the benchmark dataset demonstrate that our method produces more empathetic, coherent, informative, and specific responses than existing models.