Abstract:For neural sequence model training, maximum likelihood (ML) has been commonly adopted to optimize model parameters with respect to the corresponding objective. However, in the case of sequence prediction tasks like neural machine translation (NMT), training with the ML-based cross entropy loss would often lead to models that overgeneralize and plunge into local optima. In this paper, we propose an extended loss function called dual skew divergence (DSD), which aims to give a better tradeoff between generalization ability and error avoidance during NMT training. Our empirical study indicates that switching to DSD loss after the convergence of ML training helps the model skip the local optimum and stimulates a stable performance improvement. The evaluations on WMT 2014 English-German and English-French translation tasks demonstrate that the proposed loss indeed helps bring about better translation performance than several baselines.
Abstract:For different language pairs, word-level neural machine translation (NMT) models with a fixed-size vocabulary suffer from the same problem of representing out-of-vocabulary (OOV) words. The common practice usually replaces all these rare or unknown words with a <UNK> token, which limits the translation performance to some extent. Most of recent work handled such a problem by splitting words into characters or other specially extracted subword units to enable open-vocabulary translation. Byte pair encoding (BPE) is one of the successful attempts that has been shown extremely competitive by providing effective subword segmentation for NMT systems. In this paper, we extend the BPE style segmentation to a general unsupervised framework with three statistical measures: frequency (FRQ), accessor variety (AV) and description length gain (DLG). We test our approach on two translation tasks: German to English and Chinese to English. The experimental results show that AV and DLG enhanced systems outperform the FRQ baseline in the frequency weighted schemes at different significant levels.