Abstract:A recent study has shown that large-scale visual datasets are very biased: they can be easily classified by modern neural networks. However, the concrete forms of bias among these datasets remain unclear. In this study, we propose a framework to identify the unique visual attributes distinguishing these datasets. Our approach applies various transformations to extract semantic, structural, boundary, color, and frequency information from datasets, and assess how much each type of information reflects their bias. We further decompose their semantic bias with object-level analysis, and leverage natural language methods to generate detailed, open-ended descriptions of each dataset's characteristics. Our work aims to help researchers understand the bias in existing large-scale pre-training datasets, and build more diverse and representative ones in the future. Our project page and code are available at http://boyazeng.github.io/understand_bias .
Abstract:Recently, Large Language Models (LLMs) have achieved remarkable success using in-context learning (ICL) in the language domain. However, leveraging the ICL capabilities within LLMs to directly predict robot actions remains largely unexplored. In this paper, we introduce RoboPrompt, a framework that enables off-the-shelf text-only LLMs to directly predict robot actions through ICL without training. Our approach first heuristically identifies keyframes that capture important moments from an episode. Next, we extract end-effector actions from these keyframes as well as the estimated initial object poses, and both are converted into textual descriptions. Finally, we construct a structured template to form ICL demonstrations from these textual descriptions and a task instruction. This enables an LLM to directly predict robot actions at test time. Through extensive experiments and analysis, RoboPrompt shows stronger performance over zero-shot and ICL baselines in simulated and real-world settings.
Abstract:Data-driven methods have great advantages in modeling complicated human behavioral dynamics and dealing with many human-robot interaction applications. However, collecting massive and annotated real-world human datasets has been a laborious task, especially for highly interactive scenarios. On the other hand, algorithmic data generation methods are usually limited by their model capacities, making them unable to offer realistic and diverse data needed by various application users. In this work, we study trajectory-level data generation for multi-human or human-robot interaction scenarios and propose a learning-based automatic trajectory generation model, which we call Multi-Agent TRajectory generation with dIverse conteXts (MATRIX). MATRIX is capable of generating interactive human behaviors in realistic diverse contexts. We achieve this goal by modeling the explicit and interpretable objectives so that MATRIX can generate human motions based on diverse destinations and heterogeneous behaviors. We carried out extensive comparison and ablation studies to illustrate the effectiveness of our approach across various metrics. We also presented experiments that demonstrate the capability of MATRIX to serve as data augmentation for imitation-based motion planning.
Abstract:Weight initialization plays an important role in neural network training. Widely used initialization methods are proposed and evaluated for networks that are trained from scratch. However, the growing number of pretrained models now offers new opportunities for tackling this classical problem of weight initialization. In this work, we introduce weight selection, a method for initializing smaller models by selecting a subset of weights from a pretrained larger model. This enables the transfer of knowledge from pretrained weights to smaller models. Our experiments demonstrate that weight selection can significantly enhance the performance of small models and reduce their training time. Notably, it can also be used together with knowledge distillation. Weight selection offers a new approach to leverage the power of pretrained models in resource-constrained settings, and we hope it can be a useful tool for training small models in the large-model era. Code is available at https://github.com/OscarXZQ/weight-selection.
Abstract:Stochastic Variance Reduced Gradient (SVRG), introduced by Johnson & Zhang (2013), is a theoretically compelling optimization method. However, as Defazio & Bottou (2019) highlights, its effectiveness in deep learning is yet to be proven. In this work, we demonstrate the potential of SVRG in optimizing real-world neural networks. Our analysis finds that, for deeper networks, the strength of the variance reduction term in SVRG should be smaller and decrease as training progresses. Inspired by this, we introduce a multiplicative coefficient $\alpha$ to control the strength and adjust it through a linear decay schedule. We name our method $\alpha$-SVRG. Our results show $\alpha$-SVRG better optimizes neural networks, consistently reducing training loss compared to both baseline and the standard SVRG across various architectures and image classification datasets. We hope our findings encourage further exploration into variance reduction techniques in deep learning. Code is available at https://github.com/davidyyd/alpha-SVRG.