Abstract:Recent advancements in generative models have significantly enhanced their capacity for image generation, enabling a wide range of applications such as image editing, completion and video editing. A specialized area within generative modeling is layout-to-image (L2I) generation, where predefined layouts of objects guide the generative process. In this study, we introduce a novel regional cross-attention module tailored to enrich layout-to-image generation. This module notably improves the representation of layout regions, particularly in scenarios where existing methods struggle with highly complex and detailed textual descriptions. Moreover, while current open-vocabulary L2I methods are trained in an open-set setting, their evaluations often occur in closed-set environments. To bridge this gap, we propose two metrics to assess L2I performance in open-vocabulary scenarios. Additionally, we conduct a comprehensive user study to validate the consistency of these metrics with human preferences.
Abstract:Identifying the land cover category for each pixel in a hyperspectral image (HSI) relies on spectral and spatial information. An HSI cuboid with a specific patch size is utilized to extract spatial-spectral feature representation for the central pixel. In this article, we investigate that scene-specific but not essential correlations may be recorded in an HSI cuboid. This additional information improves the model performance on existing HSI datasets and makes it hard to properly evaluate the ability of a model. We refer to this problem as the spatial overfitting issue and utilize strict experimental settings to avoid it. We further propose a multiview transformer for HSI classification, which consists of multiview principal component analysis (MPCA), spectral encoder-decoder (SED), and spatial-pooling tokenization transformer (SPTT). MPCA performs dimension reduction on an HSI via constructing spectral multiview observations and applying PCA on each view data to extract low-dimensional view representation. The combination of view representations, named multiview representation, is the dimension reduction output of the MPCA. To aggregate the multiview information, a fully-convolutional SED with a U-shape in spectral dimension is introduced to extract a multiview feature map. SPTT transforms the multiview features into tokens using the spatial-pooling tokenization strategy and learns robust and discriminative spatial-spectral features for land cover identification. Classification is conducted with a linear classifier. Experiments on three HSI datasets with rigid settings demonstrate the superiority of the proposed multiview transformer over the state-of-the-art methods.
Abstract:This paper presents a fused deep learning algorithm for ECG classification. It takes advantages of the combined convolutional and recurrent neural network for ECG classification, and the weight allocation capability of attention mechanism. The input ECG signals are firstly segmented and normalized, and then fed into the combined VGG and LSTM network for feature extraction and classification. An attention mechanism (SE block) is embedded into the core network for increasing the weight of important features. Two databases from different sources and devices are employed for performance validation, and the results well demonstrate the effectiveness and robustness of the proposed algorithm.
Abstract:Recently, several studies have applied deep convolutional neural networks (CNNs) in image compressive sensing (CS) tasks to improve reconstruction quality. However, convolutional layers generally have a small receptive field; therefore, capturing long-range pixel correlations using CNNs is challenging, which limits their reconstruction performance in image CS tasks. Considering this limitation, we propose a U-shaped transformer for image CS tasks, called the Uformer-ICS. We develop a projection-based transformer block by integrating the prior projection knowledge of CS into the original transformer blocks, and then build a symmetrical reconstruction model using the projection-based transformer blocks and residual convolutional blocks. Compared with previous CNN-based CS methods that can only exploit local image features, the proposed reconstruction model can simultaneously utilize the local features and long-range dependencies of an image, and the prior projection knowledge of the CS theory. Additionally, we design an adaptive sampling model that can adaptively sample image blocks based on block sparsity, which can ensure that the compressed results retain the maximum possible information of the original image under a fixed sampling ratio. The proposed Uformer-ICS is an end-to-end framework that simultaneously learns the sampling and reconstruction processes. Experimental results demonstrate that it achieves significantly better reconstruction performance than existing state-of-the-art deep learning-based CS methods.
Abstract:The few-shot classification (FSC) task has been a hot research topic in recent years. It aims to address the classification problem with insufficient labeled data on a cross-category basis. Typically, researchers pre-train a feature extractor with base data, then use it to extract the features of novel data and recognize them. Notably, the novel set only has a few annotated samples and has entirely different categories from the base set, which leads to that the pre-trained feature extractor can not adapt to the novel data flawlessly. We dub this problem as Feature-Extractor-Maladaptive (FEM) problem. Starting from the root cause of this problem, this paper presents a new scheme, Component-Supervised Network (CSN), to improve the performance of FSC. We believe that although the categories of base and novel sets are different, the composition of the sample's components is similar. For example, both cat and dog contain leg and head components. Actually, such entity components are intra-class stable. They have fine cross-category versatility and new category generalization. Therefore, we refer to WordNet, a dictionary commonly used in natural language processing, to collect component information of samples and construct a component-based auxiliary task to improve the adaptability of the feature extractor. We conduct experiments on two benchmark datasets (mini-ImageNet and tiered-ImageNet), the improvements of $0.9\%$-$5.8\%$ compared with state-of-the-arts have evaluated the efficiency of our CSN.
Abstract:Few-shot classification (FSC) is one of the most concerned hot issues in recent years. The general setting consists of two phases: (1) Pre-train a feature extraction model (FEM) with base data (has large amounts of labeled samples). (2) Use the FEM to extract the features of novel data (with few labeled samples and totally different categories from base data), then classify them with the to-be-designed classifier. The adaptability of pre-trained FEM to novel data determines the accuracy of novel features, thereby affecting the final classification performances. To this end, how to appraise the pre-trained FEM is the most crucial focus in the FSC community. It sounds like traditional Class Activate Mapping (CAM) based methods can achieve this by overlaying weighted feature maps. However, due to the particularity of FSC (e.g., there is no backpropagation when using the pre-trained FEM to extract novel features), we cannot activate the feature map with the novel classes. To address this challenge, we propose a simple, flexible method, dubbed as Class-Irrelevant Mapping (CIM). Specifically, first, we introduce dictionary learning theory and view the channels of the feature map as the bases in a dictionary. Then we utilize the feature map to fit the feature vector of an image to achieve the corresponding channel weights. Finally, we overlap the weighted feature map for visualization to appraise the ability of pre-trained FEM on novel data. For fair use of CIM in evaluating different models, we propose a new measurement index, called Feature Localization Accuracy (FLA). In experiments, we first compare our CIM with CAM in regular tasks and achieve outstanding performances. Next, we use our CIM to appraise several classical FSC frameworks without considering the classification results and discuss them.
Abstract:With the rapid progress of deepfake techniques in recent years, facial video forgery can generate highly deceptive video contents and bring severe security threats. And detection of such forgery videos is much more urgent and challenging. Most existing detection methods treat the problem as a vanilla binary classification problem. In this paper, the problem is treated as a special fine-grained classification problem since the differences between fake and real faces are very subtle. It is observed that most existing face forgery methods left some common artifacts in the spatial domain and time domain, including generative defects in the spatial domain and inter-frame inconsistencies in the time domain. And a spatial-temporal model is proposed which has two components for capturing spatial and temporal forgery traces in global perspective respectively. The two components are designed using a novel long distance attention mechanism. The one component of the spatial domain is used to capture artifacts in a single frame, and the other component of the time domain is used to capture artifacts in consecutive frames. They generate attention maps in the form of patches. The attention method has a broader vision which contributes to better assembling global information and extracting local statistic information. Finally, the attention maps are used to guide the network to focus on pivotal parts of the face, just like other fine-grained classification methods. The experimental results on different public datasets demonstrate that the proposed method achieves the state-of-the-art performance, and the proposed long distance attention method can effectively capture pivotal parts for face forgery.
Abstract:Handwritten Text Line Segmentation (HTLS) is a low-level but important task for many higher-level document processing tasks like handwritten text recognition. It is often formulated in terms of semantic segmentation or object detection in deep learning. However, both formulations have serious shortcomings. The former requires heavy post-processing of splitting/merging adjacent segments, while the latter may fail on dense or curved texts. In this paper, we propose a novel Line Counting formulation for HTLS -- that involves counting the number of text lines from the top at every pixel location. This formulation helps learn an end-to-end HTLS solution that directly predicts per-pixel line number for a given document image. Furthermore, we propose a deep neural network (DNN) model LineCounter to perform HTLS through the Line Counting formulation. Our extensive experiments on the three public datasets (ICDAR2013-HSC, HIT-MW, and VML-AHTE) demonstrate that LineCounter outperforms state-of-the-art HTLS approaches. Source code is available at https://github.com/Leedeng/Line-Counter.
Abstract:Inspired by the classic Sauvola local image thresholding approach, we systematically study it from the deep neural network (DNN) perspective and propose a new solution called SauvolaNet for degraded document binarization (DDB). It is composed of three explainable modules, namely, Multi-Window Sauvola (MWS), Pixelwise Window Attention (PWA), and Adaptive Sauolva Threshold (AST). The MWS module honestly reflects the classic Sauvola but with trainable parameters and multi-window settings. The PWA module estimates the preferred window sizes for each pixel location. The AST module further consolidates the outputs from MWS and PWA and predicts the final adaptive threshold for each pixel location. As a result, SauvolaNet becomes end-to-end trainable and significantly reduces the number of required network parameters to 40K -- it is only 1\% of MobileNetV2. In the meantime, it achieves the State-of-The-Art (SoTA) performance for the DDB task -- SauvolaNet is at least comparable to, if not better than, SoTA binarization solutions in our extensive studies on the 13 public document binarization datasets. Our source code is available at https://github.com/Leedeng/SauvolaNet.
Abstract:Visible-infrared cross-modality person re-identification (VI-ReID), whose aim is to match person images between visible and infrared modality, is a challenging cross-modality image retrieval task. Most existing works integrate batch normalization layers into their neural network, but we found out that batch normalization layers would lead to two types of distribution gap: 1) inter-mini-batch distribution gap -- the distribution gap of the same modality between each mini-batch; 2) intra-mini-batch modality distribution gap -- the distribution gap of different modality within the same mini-batch. To address these problems, we propose a new batch normalization layer called Modality Batch Normalization (MBN), which normalizes each modality sub-mini-batch respectively instead of the whole mini-batch, and can reduce these distribution gap significantly. Extensive experiments show that our MBN is able to boost the performance of VI-ReID models, even with different datasets, backbones and losses.