Abstract:Link prediction (LP) is crucial for Knowledge Graphs (KG) completion but commonly suffers from interpretability issues. While several methods have been proposed to explain embedding-based LP models, they are generally limited to local explanations on KG and are deficient in providing human interpretable semantics. Based on real-world observations of the characteristics of KGs from multiple domains, we propose to explain LP models in KG with path-based explanations. An integrated framework, namely eXpath, is introduced which incorporates the concept of relation path with ontological closed path rules to enhance both the efficiency and effectiveness of LP interpretation. Notably, the eXpath explanations can be fused with other single-link explanation approaches to achieve a better overall solution. Extensive experiments across benchmark datasets and LP models demonstrate that introducing eXpath can boost the quality of resulting explanations by about 20% on two key metrics and reduce the required explanation time by 61.4%, in comparison to the best existing method. Case studies further highlight eXpath's ability to provide more semantically meaningful explanations through path-based evidence.
Abstract:Image segmentation is a crucial vision task that groups pixels within an image into semantically meaningful segments, which is pivotal in obtaining a fine-grained understanding of real-world scenes. However, an increasing privacy concern exists regarding training large-scale image segmentation models on unauthorized private data. In this work, we exploit the concept of unlearnable examples to make images unusable to model training by generating and adding unlearnable noise into the original images. Particularly, we propose a novel Unlearnable Segmentation (UnSeg) framework to train a universal unlearnable noise generator that is capable of transforming any downstream images into their unlearnable version. The unlearnable noise generator is finetuned from the Segment Anything Model (SAM) via bilevel optimization on an interactive segmentation dataset towards minimizing the training error of a surrogate model that shares the same architecture with SAM but is trained from scratch. We empirically verify the effectiveness of UnSeg across 6 mainstream image segmentation tasks, 10 widely used datasets, and 7 different network architectures, and show that the unlearnable images can reduce the segmentation performance by a large margin. Our work provides useful insights into how to leverage foundation models in a data-efficient and computationally affordable manner to protect images against image segmentation models.