Abstract:Traffic crashes profoundly impede traffic efficiency and pose economic challenges. Accurate prediction of post-crash traffic status provides essential information for evaluating traffic perturbations and developing effective solutions. Previous studies have established a series of deep learning models to predict post-crash traffic conditions, however, these correlation-based methods cannot accommodate the biases caused by time-varying confounders and the heterogeneous effects of crashes. The post-crash traffic prediction model needs to estimate the counterfactual traffic speed response to hypothetical crashes under various conditions, which demonstrates the necessity of understanding the causal relationship between traffic factors. Therefore, this paper presents the Marginal Structural Causal Transformer (MSCT), a novel deep learning model designed for counterfactual post-crash traffic prediction. To address the issue of time-varying confounding bias, MSCT incorporates a structure inspired by Marginal Structural Models and introduces a balanced loss function to facilitate learning of invariant causal features. The proposed model is treatment-aware, with a specific focus on comprehending and predicting traffic speed under hypothetical crash intervention strategies. In the absence of ground-truth data, a synthetic data generation procedure is proposed to emulate the causal mechanism between traffic speed, crashes, and covariates. The model is validated using both synthetic and real-world data, demonstrating that MSCT outperforms state-of-the-art models in multi-step-ahead prediction performance. This study also systematically analyzes the impact of time-varying confounding bias and dataset distribution on model performance, contributing valuable insights into counterfactual prediction for intelligent transportation systems.
Abstract:Counterfactual thinking is a critical yet challenging topic for artificial intelligence to learn knowledge from data and ultimately improve their performances for new scenarios. Many research works, including Potential Outcome Model and Structural Causal Model, have been proposed to realize it. However, their modelings, theoretical foundations and application approaches are usually different. Moreover, there is a lack of graphical approach to infer spatio-temporal counterfactuals, that considers spatial and temporal interactions between multiple units. Thus, in this work, our aim is to investigate a survey to compare and discuss different counterfactual models, theories and approaches, and further build a unified graphical causal frameworks to infer the spatio-temporal counterfactuals.
Abstract:Time-series prediction has drawn considerable attention during the past decades fueled by the emerging advances of deep learning methods. However, most neural network based methods lack interpretability and fail in extracting the hidden mechanism of the targeted physical system. To overcome these shortcomings, an interpretable sparse system identification method without any prior knowledge is proposed in this study. This method adopts the Fourier transform to reduces the irrelevant items in the dictionary matrix, instead of indiscriminate usage of polynomial functions in most system identification methods. It shows an interpretable system representation and greatly reduces computing cost. With the adoption of $l_1$ norm in regularizing the parameter matrix, a sparse description of the system model can be achieved. Moreover, Three data sets including the water conservancy data, global temperature data and financial data are used to test the performance of the proposed method. Although no prior knowledge was known about the physical background, experimental results show that our method can achieve long-term prediction regardless of the noise and incompleteness in the original data more accurately than the widely-used baseline data-driven methods. This study may provide some insight into time-series prediction investigations, and suggests that an white-box system identification method may extract the easily overlooked yet inherent periodical features and may beat neural-network based black-box methods on long-term prediction tasks.
Abstract:Identifying causality is a challenging task in many data-intensive scenarios. Many algorithms have been proposed for this critical task. However, most of them consider the learning algorithms for directed acyclic graph (DAG) of Bayesian network (BN). These BN-based models only have limited causal explainability because of the issue of Markov equivalence class. Moreover, they are dependent on the assumption of stationarity, whereas many sampling time series from complex system are nonstationary. The nonstationary time series bring dataset shift problem, which leads to the unsatisfactory performances of these algorithms. To fill these gaps, a novel causation model named Unique Causal Network (UCN) is proposed in this paper. Different from the previous BN-based models, UCN considers the influence of time delay, and proves the uniqueness of obtained network structure, which addresses the issue of Markov equivalence class. Furthermore, based on the decomposability property of UCN, a higher-order causal entropy (HCE) algorithm is designed to identify the structure of UCN in a distributed way. HCE algorithm measures the strength of causality by using nearest-neighbors entropy estimator, which works well on nonstationary time series. Finally, lots of experiments validate that HCE algorithm achieves state-of-the-art accuracy when time series are nonstationary, compared to the other baseline algorithms.