Abstract:Despite the remarkable generative capabilities of language models in producing naturalistic language, their effectiveness on explicit manipulation and generation of linguistic structures remain understudied. In this paper, we investigate the task of generating new sentences preserving a given semantic structure, following the FrameNet formalism. We propose a framework to produce novel frame-semantically annotated sentences following an overgenerate-and-filter approach. Our results show that conditioning on rich, explicit semantic information tends to produce generations with high human acceptance, under both prompting and finetuning. Our generated frame-semantic structured annotations are effective at training data augmentation for frame-semantic role labeling in low-resource settings; however, we do not see benefits under higher resource settings. Our study concludes that while generating high-quality, semantically rich data might be within reach, the downstream utility of such generations remains to be seen, highlighting the outstanding challenges with automating linguistic annotation tasks.
Abstract:The objective of few-shot named entity recognition is to identify named entities with limited labeled instances. Previous works have primarily focused on optimizing the traditional token-wise classification framework, while neglecting the exploration of information based on NER data characteristics. To address this issue, we propose a Multi-Task Semantic Decomposition Framework via Joint Task-specific Pre-training (MSDP) for few-shot NER. Drawing inspiration from demonstration-based and contrastive learning, we introduce two novel pre-training tasks: Demonstration-based Masked Language Modeling (MLM) and Class Contrastive Discrimination. These tasks effectively incorporate entity boundary information and enhance entity representation in Pre-trained Language Models (PLMs). In the downstream main task, we introduce a multi-task joint optimization framework with the semantic decomposing method, which facilitates the model to integrate two different semantic information for entity classification. Experimental results of two few-shot NER benchmarks demonstrate that MSDP consistently outperforms strong baselines by a large margin. Extensive analyses validate the effectiveness and generalization of MSDP.
Abstract:Few-shot named entity recognition (NER) aims at identifying named entities based on only few labeled instances. Most existing prototype-based sequence labeling models tend to memorize entity mentions which would be easily confused by close prototypes. In this paper, we proposed a Prototypical Semantic Decoupling method via joint Contrastive learning (PSDC) for few-shot NER. Specifically, we decouple class-specific prototypes and contextual semantic prototypes by two masking strategies to lead the model to focus on two different semantic information for inference. Besides, we further introduce joint contrastive learning objectives to better integrate two kinds of decoupling information and prevent semantic collapse. Experimental results on two few-shot NER benchmarks demonstrate that PSDC consistently outperforms the previous SOTA methods in terms of overall performance. Extensive analysis further validates the effectiveness and generalization of PSDC.
Abstract:In real dialogue scenarios, the existing slot filling model, which tends to memorize entity patterns, has a significantly reduced generalization facing Out-of-Vocabulary (OOV) problems. To address this issue, we propose an OOV robust slot filling model based on multi-level data augmentations to solve the OOV problem from both word and slot perspectives. We present a unified contrastive learning framework, which pull representations of the origin sample and augmentation samples together, to make the model resistant to OOV problems. We evaluate the performance of the model from some specific slots and carefully design test data with OOV word perturbation to further demonstrate the effectiveness of OOV words. Experiments on two datasets show that our approach outperforms the previous sota methods in terms of both OOV slots and words.
Abstract:Most existing slot filling models tend to memorize inherent patterns of entities and corresponding contexts from training data. However, these models can lead to system failure or undesirable outputs when being exposed to spoken language perturbation or variation in practice. We propose a perturbed semantic structure awareness transferring method for training perturbation-robust slot filling models. Specifically, we introduce two MLM-based training strategies to respectively learn contextual semantic structure and word distribution from unsupervised language perturbation corpus. Then, we transfer semantic knowledge learned from upstream training procedure into the original samples and filter generated data by consistency processing. These procedures aim to enhance the robustness of slot filling models. Experimental results show that our method consistently outperforms the previous basic methods and gains strong generalization while preventing the model from memorizing inherent patterns of entities and contexts.
Abstract:In this essay, we have comprehensively evaluated the feasibility and suitability of adopting the Machine Learning Models on the forecast of corporation fundamentals (i.e. the earnings), where the prediction results of our method have been thoroughly compared with both analysts' consensus estimation and traditional statistical models. As a result, our model has already been proved to be capable of serving as a favorable auxiliary tool for analysts to conduct better predictions on company fundamentals. Compared with previous traditional statistical models being widely adopted in the industry like Logistic Regression, our method has already achieved satisfactory advancement on both the prediction accuracy and speed. Meanwhile, we are also confident enough that there are still vast potentialities for this model to evolve, where we do hope that in the near future, the machine learning model could generate even better performances compared with professional analysts.