Abstract:Detecting whether copyright holders' works were used in LLM pretraining is poised to be an important problem. This work proposes using data watermarks to enable principled detection with only black-box model access, provided that the rightholder contributed multiple training documents and watermarked them before public release. By applying a randomly sampled data watermark, detection can be framed as hypothesis testing, which provides guarantees on the false detection rate. We study two watermarks: one that inserts random sequences, and another that randomly substitutes characters with Unicode lookalikes. We first show how three aspects of watermark design -- watermark length, number of duplications, and interference -- affect the power of the hypothesis test. Next, we study how a watermark's detection strength changes under model and dataset scaling: while increasing the dataset size decreases the strength of the watermark, watermarks remain strong if the model size also increases. Finally, we view SHA hashes as natural watermarks and show that we can robustly detect hashes from BLOOM-176B's training data, as long as they occurred at least 90 times. Together, our results point towards a promising future for data watermarks in real world use.
Abstract:Estimating the expected output quality of generation systems is central to NLG. This paper qualifies the notion that automatic metrics are not as good as humans in estimating system-level quality. Statistically, humans are unbiased, high variance estimators, while metrics are biased, low variance estimators. We compare these estimators by their error in pairwise prediction (which generation system is better?) using the bootstrap. Measuring this error is complicated: predictions are evaluated against noisy, human predicted labels instead of the ground truth, and metric predictions fluctuate based on the test sets they were calculated on. By applying a bias-variance-noise decomposition, we adjust this error to a noise-free, infinite test set setting. Our analysis compares the adjusted error of metrics to humans and a derived, perfect segment-level annotator, both of which are unbiased estimators dependent on the number of judgments collected. In MT, we identify two settings where metrics outperform humans due to a statistical advantage in variance: when the number of human judgments used is small, and when the quality difference between compared systems is small. The data and code to reproduce our analyses are available at https://github.com/johntzwei/metric-statistical-advantage .
Abstract:Natural language generation (NLG) has received increasing attention, which has highlighted evaluation as a central methodological concern. Since human evaluations for these systems are costly, automatic metrics have broad appeal in NLG. Research in language generation often finds situations where it is appropriate to apply existing metrics or propose new ones. The application of these metrics are entirely dependent on validation studies - studies that determine a metric's correlation to human judgment. However, there are many details and considerations in conducting strong validation studies. This document is intended for those validating existing metrics or proposing new ones in the broad context of NLG: we 1) begin with a write-up of best practices in validation studies, 2) outline how to adopt these practices, 3) conduct analyses in the WMT'17 metrics shared task\footnote{Our jupyter notebook containing the analyses is available at \url{https://github.com}}, and 4) highlight promising approaches to NLG metrics 5) conclude with our opinions on the future of this area.
Abstract:Despite advances in open-domain dialogue systems, automatic evaluation of such systems is still a challenging problem. Traditional reference-based metrics such as BLEU are ineffective because there could be many valid responses for a given context that share no common words with reference responses. A recent work proposed Referenced metric and Unreferenced metric Blended Evaluation Routine (RUBER) to combine a learning-based metric, which predicts relatedness between a generated response and a given query, with reference-based metric; it showed high correlation with human judgments. In this paper, we explore using contextualized word embeddings to compute more accurate relatedness scores, thus better evaluation metrics. Experiments show that our evaluation metrics outperform RUBER, which is trained on static embeddings.
Abstract:Sequence to sequence (seq2seq) models are often employed in settings where the target output is natural language. However, the syntactic properties of the language generated from these models are not well understood. We explore whether such output belongs to a formal and realistic grammar, by employing the English Resource Grammar (ERG), a broad coverage, linguistically precise HPSG-based grammar of English. From a French to English parallel corpus, we analyze the parseability and grammatical constructions occurring in output from a seq2seq translation model. Over 93\% of the model translations are parseable, suggesting that it learns to generate conforming to a grammar. The model has trouble learning the distribution of rarer syntactic rules, and we pinpoint several constructions that differentiate translations between the references and our model.