Abstract:In this paper, how to efficiently find the optimal path in complex warehouse layout and make real-time decision is a key problem. This paper proposes a new method of Proximal Policy Optimization (PPO) and Dijkstra's algorithm, Proximal policy-Dijkstra (PP-D). PP-D method realizes efficient strategy learning and real-time decision making through PPO, and uses Dijkstra algorithm to plan the global optimal path, thus ensuring high navigation accuracy and significantly improving the efficiency of path planning. Specifically, PPO enables robots to quickly adapt and optimize action strategies in dynamic environments through its stable policy updating mechanism. Dijkstra's algorithm ensures global optimal path planning in static environment. Finally, through the comparison experiment and analysis of the proposed framework with the traditional algorithm, the results show that the PP-D method has significant advantages in improving the accuracy of navigation prediction and enhancing the robustness of the system. Especially in complex warehouse layout, PP-D method can find the optimal path more accurately and reduce collision and stagnation. This proves the reliability and effectiveness of the robot in the study of complex warehouse layout navigation algorithm.
Abstract:Conformal prediction (CP), a distribution-free uncertainty quantification (UQ) framework, reliably provides valid predictive inference for black-box models. CP constructs prediction sets that contain the true output with a specified probability. However, modern data science diverse modalities, along with increasing data and model complexity, challenge traditional CP methods. These developments have spurred novel approaches to address evolving scenarios. This survey reviews the foundational concepts of CP and recent advancements from a data-centric perspective, including applications to structured, unstructured, and dynamic data. We also discuss the challenges and opportunities CP faces in large-scale data and models.
Abstract:Exploring the capabilities of Neural Radiance Fields (NeRF) and Gaussian-based methods in the context of 3D scene reconstruction, this study contrasts these modern approaches with traditional Simultaneous Localization and Mapping (SLAM) systems. Utilizing datasets such as Replica and ScanNet, we assess performance based on tracking accuracy, mapping fidelity, and view synthesis. Findings reveal that NeRF excels in view synthesis, offering unique capabilities in generating new perspectives from existing data, albeit at slower processing speeds. Conversely, Gaussian-based methods provide rapid processing and significant expressiveness but lack comprehensive scene completion. Enhanced by global optimization and loop closure techniques, newer methods like NICE-SLAM and SplaTAM not only surpass older frameworks such as ORB-SLAM2 in terms of robustness but also demonstrate superior performance in dynamic and complex environments. This comparative analysis bridges theoretical research with practical implications, shedding light on future developments in robust 3D scene reconstruction across various real-world applications.
Abstract:The target of Electronic Health Record (EHR) coding is to find the diagnostic codes according to the EHRs. In previous research, researchers have preferred to do multi-classification on the EHR coding task; most of them encode the EHR first and then process it to get the probability of each code based on the EHR representation. However, the question of complicating diseases is neglected among all these methods. In this paper, we propose a novel EHR coding framework, which is the first attempt at detecting complicating diseases, called Copy Recurrent Neural Network Structure Network (CRNNet). This method refers to the idea of adversarial learning; a Path Generator and a Path Discriminator are designed to more efficiently finish the task of EHR coding. We propose a copy module to detect complicating diseases; by the proposed copy module and the adversarial learning strategy, we identify complicating diseases efficiently. Extensive experiments show that our method achieves a 57.30\% ratio of complicating diseases in predictions, demonstrating the effectiveness of our proposed model. According to the ablation study, the proposed copy mechanism plays a crucial role in detecting complicating diseases.
Abstract:Sequential recommendation involves automatically recommending the next item to users based on their historical item sequence. While most prior research employs RNN or transformer methods to glean information from the item sequence-generating probabilities for each user-item pair and recommending the top items, these approaches often overlook the challenge posed by spurious relationships. This paper specifically addresses these spurious relations. We introduce a novel sequential recommendation framework named Irl4Rec. This framework harnesses invariant learning and employs a new objective that factors in the relationship between spurious variables and adjustment variables during model training. This approach aids in identifying spurious relations. Comparative analyses reveal that our framework outperforms three typical methods, underscoring the effectiveness of our model. Moreover, an ablation study further demonstrates the critical role our model plays in detecting spurious relations.
Abstract:Electronic Health Record (EHR) coding involves automatically classifying EHRs into diagnostic codes. While most previous research treats this as a multi-label classification task, generating probabilities for each code and selecting those above a certain threshold as labels, these approaches often overlook the challenge of identifying complex diseases. In this study, our focus is on detecting complication diseases within EHRs. We propose a novel coarse-to-fine ICD path generation framework called the Copy Recurrent Neural Network Structure Network (CRNNet), which employs a Path Generator (PG) and a Path Discriminator (PD) for EHR coding. By using RNNs to generate sequential outputs and incorporating a copy module, we efficiently identify complication diseases. Our method achieves a 57.30\% ratio of complex diseases in predictions, outperforming state-of-the-art and previous approaches. Additionally, through an ablation study, we demonstrate that the copy mechanism plays a crucial role in detecting complex diseases.