Abstract:The 2023 Big ANN Challenge, held at NeurIPS 2023, focused on advancing the state-of-the-art in indexing data structures and search algorithms for practical variants of Approximate Nearest Neighbor (ANN) search that reflect the growing complexity and diversity of workloads. Unlike prior challenges that emphasized scaling up classical ANN search ~\cite{DBLP:conf/nips/SimhadriWADBBCH21}, this competition addressed filtered search, out-of-distribution data, sparse and streaming variants of ANNS. Participants developed and submitted innovative solutions that were evaluated on new standard datasets with constrained computational resources. The results showcased significant improvements in search accuracy and efficiency over industry-standard baselines, with notable contributions from both academic and industrial teams. This paper summarizes the competition tracks, datasets, evaluation metrics, and the innovative approaches of the top-performing submissions, providing insights into the current advancements and future directions in the field of approximate nearest neighbor search.
Abstract:New Natural Langauge Process~(NLP) benchmarks are urgently needed to align with the rapid development of large language models (LLMs). We present Xiezhi, the most comprehensive evaluation suite designed to assess holistic domain knowledge. Xiezhi comprises multiple-choice questions across 516 diverse disciplines ranging from 13 different subjects with 249,587 questions and accompanied by Xiezhi-Specialty and Xiezhi-Interdiscipline, both with 15k questions. We conduct evaluation of the 47 cutting-edge LLMs on Xiezhi. Results indicate that LLMs exceed average performance of humans in science, engineering, agronomy, medicine, and art, but fall short in economics, jurisprudence, pedagogy, literature, history, and management. We anticipate Xiezhi will help analyze important strengths and shortcomings of LLMs, and the benchmark is released in~\url{https://github.com/MikeGu721/XiezhiBenchmark}.
Abstract:Neural machine translation(NMT) has aroused wide attention due to its impressive quality. Beyond quality, controlling translation styles is also an important demand for many languages. Previous related studies mainly focus on controlling formality and gain some improvements. However, they still face two challenges. The first is the evaluation limitation. Style contains abundant information including lexis, syntax, etc. But only formality is well studied. The second is the heavy reliance on iterative fine-tuning when new styles are required. Correspondingly, this paper contributes in terms of the benchmark and approach. First, we re-visit this task and propose a multiway stylized machine translation (MSMT) benchmark, which includes multiple categories of styles in four language directions to push the boundary of this task. Second, we propose a method named style activation prompt (StyleAP) by retrieving prompts from stylized monolingual corpus, which needs no extra fine-tuning. Experiments show that StyleAP could effectively control the style of translation and achieve remarkable performance. All of our data and code are released at https://github.com/IvanWang0730/StyleAP.
Abstract:Natural language question answering over knowledge graphs is an important and interesting task as it enables common users to gain accurate answers in an easy and intuitive manner. However, it remains a challenge to bridge the gap between unstructured questions and structured knowledge graphs. To address the problem, a natural discipline is building a structured query to represent the input question. Searching the structured query over the knowledge graph can produce answers to the question. Distinct from the existing methods that are based on semantic parsing or templates, we propose an effective approach powered by a novel notion, structural query pattern, in this paper. Given an input question, we first generate its query sketch that is compatible with the underlying structure of the knowledge graph. Then, we complete the query graph by labeling the nodes and edges under the guidance of the structural query pattern. Finally, answers can be retrieved by executing the constructed query graph over the knowledge graph. Evaluations on three question answering benchmarks show that our proposed approach outperforms state-of-the-art methods significantly.
Abstract:Given a natural language phrase, relation linking aims to find a relation (predicate or property) from the underlying knowledge graph to match the phrase. It is very useful in many applications, such as natural language question answering, personalized recommendation and text summarization. However, the previous relation linking algorithms usually produce a single relation for the input phrase and pay little attention to a more general and challenging problem, i.e., combinational relation linking that extracts a subgraph pattern to match the compound phrase (e.g. mother-in-law). In this paper, we focus on the task of combinational relation linking over knowledge graphs. To resolve the problem, we design a systematic method based on the data-driven relation assembly technique, which is performed under the guidance of meta patterns. We also introduce external knowledge to enhance the system understanding ability. Finally, we conduct extensive experiments over the real knowledge graph to study the performance of the proposed method.