Abstract:Graph computational tasks are inherently challenging and often demand the development of advanced algorithms for effective solutions. With the emergence of large language models (LLMs), researchers have begun investigating their potential to address these tasks. However, existing approaches are constrained by LLMs' limited capability to comprehend complex graph structures and their high inference costs, rendering them impractical for handling large-scale graphs. Inspired by human approaches to graph problems, we introduce a novel framework, PIE (Pseudocode-Injection-Enhanced LLM Reasoning for Graph Computational Tasks), which consists of three key steps: problem understanding, prompt design, and code generation. In this framework, LLMs are tasked with understanding the problem and extracting relevant information to generate correct code. The responsibility for analyzing the graph structure and executing the code is delegated to the interpreter. We inject task-related pseudocodes into the prompts to further assist the LLMs in generating efficient code. We also employ cost-effective trial-and-error techniques to ensure that the LLM-generated code executes correctly. Unlike other methods that require invoking LLMs for each individual test case, PIE only calls the LLM during the code generation phase, allowing the generated code to be reused and significantly reducing inference costs. Extensive experiments demonstrate that PIE outperforms existing baselines in terms of both accuracy and computational efficiency.
Abstract:Recent advancements in large language models (LLMs) have shown impressive versatility across various tasks. To eliminate its hallucinations, retrieval-augmented generation (RAG) has emerged as a powerful approach, leveraging external knowledge sources like knowledge graphs (KGs). In this paper, we study the task of KG-driven RAG and propose a novel Similar Graph Enhanced Retrieval-Augmented Generation (SimGRAG) method. It effectively addresses the challenge of aligning query texts and KG structures through a two-stage process: (1) query-to-pattern, which uses an LLM to transform queries into a desired graph pattern, and (2) pattern-to-subgraph, which quantifies the alignment between the pattern and candidate subgraphs using a graph semantic distance (GSD) metric. We also develop an optimized retrieval algorithm that efficiently identifies the top-$k$ subgraphs within 1-second latency on a 10-million-scale KG. Extensive experiments show that SimGRAG outperforms state-of-the-art KG-driven RAG methods in both question answering and fact verification, offering superior plug-and-play usability and scalability.