Abstract:Graph Mamba, a powerful graph embedding technique, has emerged as a cornerstone in various domains, including bioinformatics, social networks, and recommendation systems. This survey represents the first comprehensive study devoted to Graph Mamba, to address the critical gaps in understanding its applications, challenges, and future potential. We start by offering a detailed explanation of the original Graph Mamba architecture, highlighting its key components and underlying mechanisms. Subsequently, we explore the most recent modifications and enhancements proposed to improve its performance and applicability. To demonstrate the versatility of Graph Mamba, we examine its applications across diverse domains. A comparative analysis of Graph Mamba and its variants is conducted to shed light on their unique characteristics and potential use cases. Furthermore, we identify potential areas where Graph Mamba can be applied in the future, highlighting its potential to revolutionize data analysis in these fields. Finally, we address the current limitations and open research questions associated with Graph Mamba. By acknowledging these challenges, we aim to stimulate further research and development in this promising area. This survey serves as a valuable resource for both newcomers and experienced researchers seeking to understand and leverage the power of Graph Mamba.
Abstract:With the rapid rise of the Internet of Things (IoT), ensuring the security of IoT devices has become essential. One of the primary challenges in this field is that new types of attacks often have significantly fewer samples than more common attacks, leading to unbalanced datasets. Existing research on detecting intrusions in these unbalanced labeled datasets primarily employs Convolutional Neural Networks (CNNs) or conventional Machine Learning (ML) models, which result in incomplete detection, especially for new attacks. To handle these challenges, we suggest a new approach to IoT intrusion detection using Self-Supervised Learning (SSL) with a Markov Graph Convolutional Network (MarkovGCN). Graph learning excels at modeling complex relationships within data, while SSL mitigates the issue of limited labeled data for emerging attacks. Our approach leverages the inherent structure of IoT networks to pre-train a GCN, which is then fine-tuned for the intrusion detection task. The integration of Markov chains in GCN uncovers network structures and enriches node and edge features with contextual information. Experimental results demonstrate that our approach significantly improves detection accuracy and robustness compared to conventional supervised learning methods. Using the EdgeIIoT-set dataset, we attained an accuracy of 98.68\%, a precision of 98.18%, a recall of 98.35%, and an F1-Score of 98.40%.
Abstract:The abundance of complex and interconnected healthcare data offers numerous opportunities to improve prediction, diagnosis, and treatment. Graph-structured data, which includes entities and their relationships, is well-suited for capturing complex connections. Effectively utilizing this data often requires strong and efficient learning algorithms, especially when dealing with limited labeled data. It is increasingly important for downstream tasks in various domains to utilize self-supervised learning (SSL) as a paradigm for learning and optimizing effective representations from unlabeled data. In this paper, we thoroughly review SSL approaches specifically designed for graph-structured data in healthcare applications. We explore the challenges and opportunities associated with healthcare data and assess the effectiveness of SSL techniques in real-world healthcare applications. Our discussion encompasses various healthcare settings, such as disease prediction, medical image analysis, and drug discovery. We critically evaluate the performance of different SSL methods across these tasks, highlighting their strengths, limitations, and potential future research directions. Ultimately, this review aims to be a valuable resource for both researchers and practitioners looking to utilize SSL for graph-structured data in healthcare, paving the way for improved outcomes and insights in this critical field. To the best of our knowledge, this work represents the first comprehensive review of the literature on SSL applied to graph data in healthcare.
Abstract:Sleep plays a crucial role in neonatal development. Monitoring the sleep patterns in neonates in a Neonatal Intensive Care Unit (NICU) is imperative for understanding the maturation process. While polysomnography (PSG) is considered the best practice for sleep classification, its expense and reliance on human annotation pose challenges. Existing research often relies on multichannel EEG signals; however, concerns arise regarding the vulnerability of neonates and the potential impact on their sleep quality. This paper introduces a novel approach to neonatal sleep stage classification using a single-channel gradient boosting algorithm with Hjorth features. The gradient boosting parameters are fine-tuned using random search cross-validation (randomsearchCV), achieving an accuracy of 82.35% for neonatal sleep-wake classification. Validation is conducted through 5-fold cross-validation. The proposed algorithm not only enhances existing neonatal sleep algorithms but also opens avenues for broader applications.
Abstract:The Internet of Things (IoT) has been introduced as a breakthrough technology that integrates intelligence into everyday objects, enabling high levels of connectivity between them. As the IoT networks grow and expand, they become more susceptible to cybersecurity attacks. A significant challenge in current intrusion detection systems for IoT includes handling imbalanced datasets where labeled data are scarce, particularly for new and rare types of cyber attacks. Existing literature often fails to detect such underrepresented attack classes. This paper introduces a novel intrusion detection approach designed to address these challenges. By integrating Self Supervised Learning (SSL), Few Shot Learning (FSL), and Random Forest (RF), our approach excels in learning from limited and imbalanced data and enhancing detection capabilities. The approach starts with a Deep Infomax model trained to extract key features from the dataset. These features are then fed into a prototypical network to generate discriminate embedding. Subsequently, an RF classifier is employed to detect and classify potential malware, including a range of attacks that are frequently observed in IoT networks. The proposed approach was evaluated through two different datasets, MaleVis and WSN-DS, which demonstrate its superior performance with accuracies of 98.60% and 99.56%, precisions of 98.79% and 99.56%, recalls of 98.60% and 99.56%, and F1-scores of 98.63% and 99.56%, respectively.
Abstract:The growing interest in satellite imagery has triggered the need for efficient mechanisms to extract valuable information from these vast data sources, providing deeper insights. Even though deep learning has shown significant progress in satellite image classification. Nevertheless, in the literature, only a few results can be found on weight initialization techniques. These techniques traditionally involve initializing the networks' weights before training on extensive datasets, distinct from fine-tuning the weights of pre-trained networks. In this study, a novel weight initialization method is proposed in the context of satellite image classification. The proposed weight initialization method is mathematically detailed during the forward and backward passes of the convolutional neural network (CNN) model. Extensive experiments are carried out using six real-world datasets. Comparative analyses with existing weight initialization techniques made on various well-known CNN models reveal that the proposed weight initialization technique outperforms the previous competitive techniques in classification accuracy. The complete code of the proposed technique, along with the obtained results, is available at https://github.com/WadiiBoulila/Weight-Initialization
Abstract:Addressing uncertainty in Deep Learning (DL) is essential, as it enables the development of models that can make reliable predictions and informed decisions in complex, real-world environments where data may be incomplete or ambiguous. This paper introduces a novel algorithm leveraging Dempster-Shafer Theory (DST) to integrate multiple pre-trained models to form an ensemble capable of providing more reliable and enhanced classifications. The main steps of the proposed method include feature extraction, mass function calculation, fusion, and expected utility calculation. Several experiments have been conducted on CIFAR-10 and CIFAR-100 datasets, demonstrating superior classification accuracy of the proposed DST-based method, achieving improvements of 5.4% and 8.4%, respectively, compared to the best individual pre-trained models. Results highlight the potential of DST as a robust framework for managing uncertainties related to data when applying DL in real-world scenarios.
Abstract:The Red Palm Weevil (RPW), also known as the palm weevil, is considered among the world's most damaging insect pests of palms. Current detection techniques include the detection of symptoms of RPW using visual or sound inspection and chemical detection of volatile signatures generated by infested palm trees. However, efficient detection of RPW diseases at an early stage is considered one of the most challenging issues for cultivating date palms. In this paper, an efficient approach to the early detection of RPW is proposed. The proposed approach is based on RPW sound activities being recorded and analyzed. The first step involves the conversion of sound data into images based on a selected set of features. The second step involves the combination of images from the same sound file but computed by different features into a single image. The third step involves the application of different Deep Learning (DL) techniques to classify resulting images into two classes: infested and not infested. Experimental results show good performances of the proposed approach for RPW detection using different DL techniques, namely MobileNetV2, ResNet50V2, ResNet152V2, VGG16, VGG19, DenseNet121, DenseNet201, Xception, and InceptionV3. The proposed approach outperformed existing techniques for public datasets.
Abstract:The Red Palm Weevil (RPW) is a highly destructive insect causing economic losses and impacting palm tree farming worldwide. This paper proposes an innovative approach for sustainable palm tree farming by utilizing advanced technologies for the early detection and management of RPW. Our approach combines computer vision, deep learning (DL), the Internet of Things (IoT), and geospatial data to detect and classify RPW-infested palm trees effectively. The main phases include; (1) DL classification using sound data from IoT devices, (2) palm tree detection using YOLOv8 on UAV images, and (3) RPW mapping using geospatial data. Our custom DL model achieves 100% precision and recall in detecting and localizing infested palm trees. Integrating geospatial data enables the creation of a comprehensive RPW distribution map for efficient monitoring and targeted management strategies. This technology-driven approach benefits agricultural authorities, farmers, and researchers in managing RPW infestations and safeguarding palm tree plantations' productivity.
Abstract:Nowadays, diseases are increasing in numbers and severity by the hour. Immunity diseases, affecting 8\% of the world population in 2017 according to the World Health Organization (WHO), is a field in medicine worth attention due to the high rate of disease occurrence classified under this category. This work presents an up-to-date review of state-of-the-art immune diseases healthcare solutions. We focus on tackling the issue with modern solutions such as Deep Learning to detect anomalies in the early stages hence providing health practitioners with efficient tools. We rely on advanced deep learning techniques such as Convolutional Neural Networks (CNN) to fulfill our objective of providing an efficient tool while providing a proficient analysis of this solution. The proposed solution was tested and evaluated by the immunology department in the Principal Military Hospital of Instruction of Tunis, which considered it a very helpful tool.