Abstract:Fire safety practices are important to reduce the extent of destruction caused by fire. While smoke alarms help save lives, firefighters struggle with the increasing number of false alarms. This paper presents a precise and efficient Weighted ensemble model for decreasing false alarms. It estimates the density, computes weights according to the high and low-density regions, forwards the high region weights to KNN and low region weights to XGBoost and combines the predictions. The proposed model is effective at reducing response time, increasing fire safety, and minimizing the damage that fires cause. A specifically designed dataset for smoke detection is utilized to test the proposed model. In addition, a variety of ML models, such as Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Nai:ve Bayes (NB), K-Nearest Neighbour (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Adaptive Boosting (ADAB), have also been utilized. To maximize the use of the smoke detection dataset, all the algorithms utilize the SMOTE re-sampling technique. After evaluating the assessment criteria, this paper presents a concise summary of the comprehensive findings obtained by comparing the outcomes of all models.
Abstract:Ambient computing is gaining popularity as a major technological advancement for the future. The modern era has witnessed a surge in the advancement in healthcare systems, with viable radio frequency solutions proposed for remote and unobtrusive human activity recognition (HAR). Specifically, this study investigates the use of Wi-Fi channel state information (CSI) as a novel method of ambient sensing that can be employed as a contactless means of recognizing human activity in indoor environments. These methods avoid additional costly hardware required for vision-based systems, which are privacy-intrusive, by (re)using Wi-Fi CSI for various safety and security applications. During an experiment utilizing universal software-defined radio (USRP) to collect CSI samples, it was observed that a subject engaged in six distinct activities, which included no activity, standing, sitting, and leaning forward, across different areas of the room. Additionally, more CSI samples were collected when the subject walked in two different directions. This study presents a Wi-Fi CSI-based HAR system that assesses and contrasts deep learning approaches, namely convolutional neural network (CNN), long short-term memory (LSTM), and hybrid (LSTM+CNN), employed for accurate activity recognition. The experimental results indicate that LSTM surpasses current models and achieves an average accuracy of 95.3% in multi-activity classification when compared to CNN and hybrid techniques. In the future, research needs to study the significance of resilience in diverse and dynamic environments to identify the activity of multiple users.