Abstract:With the rapid rise of the Internet of Things (IoT), ensuring the security of IoT devices has become essential. One of the primary challenges in this field is that new types of attacks often have significantly fewer samples than more common attacks, leading to unbalanced datasets. Existing research on detecting intrusions in these unbalanced labeled datasets primarily employs Convolutional Neural Networks (CNNs) or conventional Machine Learning (ML) models, which result in incomplete detection, especially for new attacks. To handle these challenges, we suggest a new approach to IoT intrusion detection using Self-Supervised Learning (SSL) with a Markov Graph Convolutional Network (MarkovGCN). Graph learning excels at modeling complex relationships within data, while SSL mitigates the issue of limited labeled data for emerging attacks. Our approach leverages the inherent structure of IoT networks to pre-train a GCN, which is then fine-tuned for the intrusion detection task. The integration of Markov chains in GCN uncovers network structures and enriches node and edge features with contextual information. Experimental results demonstrate that our approach significantly improves detection accuracy and robustness compared to conventional supervised learning methods. Using the EdgeIIoT-set dataset, we attained an accuracy of 98.68\%, a precision of 98.18%, a recall of 98.35%, and an F1-Score of 98.40%.
Abstract:The abundance of complex and interconnected healthcare data offers numerous opportunities to improve prediction, diagnosis, and treatment. Graph-structured data, which includes entities and their relationships, is well-suited for capturing complex connections. Effectively utilizing this data often requires strong and efficient learning algorithms, especially when dealing with limited labeled data. It is increasingly important for downstream tasks in various domains to utilize self-supervised learning (SSL) as a paradigm for learning and optimizing effective representations from unlabeled data. In this paper, we thoroughly review SSL approaches specifically designed for graph-structured data in healthcare applications. We explore the challenges and opportunities associated with healthcare data and assess the effectiveness of SSL techniques in real-world healthcare applications. Our discussion encompasses various healthcare settings, such as disease prediction, medical image analysis, and drug discovery. We critically evaluate the performance of different SSL methods across these tasks, highlighting their strengths, limitations, and potential future research directions. Ultimately, this review aims to be a valuable resource for both researchers and practitioners looking to utilize SSL for graph-structured data in healthcare, paving the way for improved outcomes and insights in this critical field. To the best of our knowledge, this work represents the first comprehensive review of the literature on SSL applied to graph data in healthcare.
Abstract:This paper tackles the challenge of real-time 3D trajectory prediction for UAVs, which is critical for applications such as aerial surveillance and defense. Existing prediction models that rely primarily on position data struggle with accuracy, especially when UAV movements fall outside the position domain used in training. Our research identifies a gap in utilizing velocity estimates, first-order dynamics, to better capture the dynamics and enhance prediction accuracy and generalizability in any position domain. To bridge this gap, we propose a new trajectory prediction method using Gated Recurrent Units (GRUs) within sequence-based neural networks. Unlike traditional methods that rely on RNNs or transformers, this approach forecasts future velocities and positions based on historical velocity data instead of positions. This is designed to enhance prediction accuracy and scalability, overcoming challenges faced by conventional models in handling complex UAV dynamics. The methodology employs both synthetic and real-world 3D UAV trajectory data, capturing a wide range of flight patterns, speeds, and agility. Synthetic data is generated using the Gazebo simulator and PX4 Autopilot, while real-world data comes from the UZH-FPV and Mid-Air drone racing datasets. The GRU-based models significantly outperform state-of-the-art RNN approaches, with a mean square error (MSE) as low as 2 x 10^-8. Overall, our findings confirm the effectiveness of incorporating velocity data in improving the accuracy of UAV trajectory predictions across both synthetic and real-world scenarios, in and out of position data distributions. Finally, we open-source our 5000 trajectories dataset and a ROS 2 package to facilitate the integration with existing ROS-based UAV systems.
Abstract:In the field of sensor fusion and state estimation for object detection and localization, ensuring accurate tracking in dynamic environments poses significant challenges. Traditional methods like the Kalman Filter (KF) often fail when measurements are intermittent, leading to rapid divergence in state estimations. To address this, we introduce SMART (Sensor Measurement Augmentation and Reacquisition Tracker), a novel approach that leverages high-frequency state estimates from the KF to guide the search for new measurements, maintaining tracking continuity even when direct measurements falter. This is crucial for dynamic environments where traditional methods struggle. Our contributions include: 1) Versatile Measurement Augmentation Using KF Feedback: We implement a versatile measurement augmentation system that serves as a backup when primary object detectors fail intermittently. This system is adaptable to various sensors, demonstrated using depth cameras where KF's 3D predictions are projected into 2D depth image coordinates, integrating nonlinear covariance propagation techniques simplified to first-order approximations. 2) Open-source ROS2 Implementation: We provide an open-source ROS2 implementation of the SMART-TRACK framework, validated in a realistic simulation environment using Gazebo and ROS2, fostering broader adaptation and further research. Our results showcase significant enhancements in tracking stability, with estimation RMSE as low as 0.04 m during measurement disruptions, advancing the robustness of UAV tracking and expanding the potential for reliable autonomous UAV operations in complex scenarios. The implementation is available at https://github.com/mzahana/SMART-TRACK.
Abstract:This work presents a novel framework for training Arabic nested embedding models through Matryoshka Embedding Learning, leveraging multilingual, Arabic-specific, and English-based models, to highlight the power of nested embeddings models in various Arabic NLP downstream tasks. Our innovative contribution includes the translation of various sentence similarity datasets into Arabic, enabling a comprehensive evaluation framework to compare these models across different dimensions. We trained several nested embedding models on the Arabic Natural Language Inference triplet dataset and assessed their performance using multiple evaluation metrics, including Pearson and Spearman correlations for cosine similarity, Manhattan distance, Euclidean distance, and dot product similarity. The results demonstrate the superior performance of the Matryoshka embedding models, particularly in capturing semantic nuances unique to the Arabic language. Results demonstrated that Arabic Matryoshka embedding models have superior performance in capturing semantic nuances unique to the Arabic language, significantly outperforming traditional models by up to 20-25\% across various similarity metrics. These results underscore the effectiveness of language-specific training and highlight the potential of Matryoshka models in enhancing semantic textual similarity tasks for Arabic NLP.
Abstract:The Internet of Things (IoT) has been introduced as a breakthrough technology that integrates intelligence into everyday objects, enabling high levels of connectivity between them. As the IoT networks grow and expand, they become more susceptible to cybersecurity attacks. A significant challenge in current intrusion detection systems for IoT includes handling imbalanced datasets where labeled data are scarce, particularly for new and rare types of cyber attacks. Existing literature often fails to detect such underrepresented attack classes. This paper introduces a novel intrusion detection approach designed to address these challenges. By integrating Self Supervised Learning (SSL), Few Shot Learning (FSL), and Random Forest (RF), our approach excels in learning from limited and imbalanced data and enhancing detection capabilities. The approach starts with a Deep Infomax model trained to extract key features from the dataset. These features are then fed into a prototypical network to generate discriminate embedding. Subsequently, an RF classifier is employed to detect and classify potential malware, including a range of attacks that are frequently observed in IoT networks. The proposed approach was evaluated through two different datasets, MaleVis and WSN-DS, which demonstrate its superior performance with accuracies of 98.60% and 99.56%, precisions of 98.79% and 99.56%, recalls of 98.60% and 99.56%, and F1-scores of 98.63% and 99.56%, respectively.
Abstract:The growing interest in satellite imagery has triggered the need for efficient mechanisms to extract valuable information from these vast data sources, providing deeper insights. Even though deep learning has shown significant progress in satellite image classification. Nevertheless, in the literature, only a few results can be found on weight initialization techniques. These techniques traditionally involve initializing the networks' weights before training on extensive datasets, distinct from fine-tuning the weights of pre-trained networks. In this study, a novel weight initialization method is proposed in the context of satellite image classification. The proposed weight initialization method is mathematically detailed during the forward and backward passes of the convolutional neural network (CNN) model. Extensive experiments are carried out using six real-world datasets. Comparative analyses with existing weight initialization techniques made on various well-known CNN models reveal that the proposed weight initialization technique outperforms the previous competitive techniques in classification accuracy. The complete code of the proposed technique, along with the obtained results, is available at https://github.com/WadiiBoulila/Weight-Initialization
Abstract:Addressing uncertainty in Deep Learning (DL) is essential, as it enables the development of models that can make reliable predictions and informed decisions in complex, real-world environments where data may be incomplete or ambiguous. This paper introduces a novel algorithm leveraging Dempster-Shafer Theory (DST) to integrate multiple pre-trained models to form an ensemble capable of providing more reliable and enhanced classifications. The main steps of the proposed method include feature extraction, mass function calculation, fusion, and expected utility calculation. Several experiments have been conducted on CIFAR-10 and CIFAR-100 datasets, demonstrating superior classification accuracy of the proposed DST-based method, achieving improvements of 5.4% and 8.4%, respectively, compared to the best individual pre-trained models. Results highlight the potential of DST as a robust framework for managing uncertainties related to data when applying DL in real-world scenarios.
Abstract:In this paper we introduce APL (Arabic Programming Language) that uses Large language models (LLM) as semi-compiler to covert Arabic text code to python code then run the code. Designing a full pipeline from the structure of the APL text then a prompt (using prompt engineering) then running the prodcued python code using PyRunner. This project has a three parts first python library, a playground with simple interface and this research paper.
Abstract:The predominance of English and Latin-based large language models (LLMs) has led to a notable deficit in native Arabic LLMs. This discrepancy is accentuated by the prevalent inclusion of English tokens in existing Arabic models, detracting from their efficacy in processing native Arabic's intricate morphology and syntax. Consequently, there is a theoretical and practical imperative for developing LLMs predominantly focused on Arabic linguistic elements. To address this gap, this paper proposes ArabianGPT, a series of transformer-based models within the ArabianLLM suite designed explicitly for Arabic. These models, including ArabianGPT-0.1B and ArabianGPT-0.3B, vary in size and complexity, aligning with the nuanced linguistic characteristics of Arabic. The AraNizer tokenizer, integral to these models, addresses the unique morphological aspects of Arabic script, ensuring more accurate text processing. Empirical results from fine-tuning the models on tasks like sentiment analysis and summarization demonstrate significant improvements. For sentiment analysis, the fine-tuned ArabianGPT-0.1B model achieved a remarkable accuracy of 95%, a substantial increase from the base model's 56%. Similarly, in summarization tasks, fine-tuned models showed enhanced F1 scores, indicating improved precision and recall in generating concise summaries. Comparative analysis of fine-tuned ArabianGPT models against their base versions across various benchmarks reveals nuanced differences in performance, with fine-tuning positively impacting specific tasks like question answering and summarization. These findings underscore the efficacy of fine-tuning in aligning ArabianGPT models more closely with specific NLP tasks, highlighting the potential of tailored transformer architectures in advancing Arabic NLP.