Abstract:The predominance of English and Latin-based large language models (LLMs) has led to a notable deficit in native Arabic LLMs. This discrepancy is accentuated by the prevalent inclusion of English tokens in existing Arabic models, detracting from their efficacy in processing native Arabic's intricate morphology and syntax. Consequently, there is a theoretical and practical imperative for developing LLMs predominantly focused on Arabic linguistic elements. To address this gap, this paper proposes ArabianGPT, a series of transformer-based models within the ArabianLLM suite designed explicitly for Arabic. These models, including ArabianGPT-0.1B and ArabianGPT-0.3B, vary in size and complexity, aligning with the nuanced linguistic characteristics of Arabic. The AraNizer tokenizer, integral to these models, addresses the unique morphological aspects of Arabic script, ensuring more accurate text processing. Empirical results from fine-tuning the models on tasks like sentiment analysis and summarization demonstrate significant improvements. For sentiment analysis, the fine-tuned ArabianGPT-0.1B model achieved a remarkable accuracy of 95%, a substantial increase from the base model's 56%. Similarly, in summarization tasks, fine-tuned models showed enhanced F1 scores, indicating improved precision and recall in generating concise summaries. Comparative analysis of fine-tuned ArabianGPT models against their base versions across various benchmarks reveals nuanced differences in performance, with fine-tuning positively impacting specific tasks like question answering and summarization. These findings underscore the efficacy of fine-tuning in aligning ArabianGPT models more closely with specific NLP tasks, highlighting the potential of tailored transformer architectures in advancing Arabic NLP.
Abstract:In the intricate field of legal studies, the analysis of court decisions is a cornerstone for the effective functioning of the judicial system. The ability to predict court outcomes helps judges during the decision-making process and equips lawyers with invaluable insights, enhancing their strategic approaches to cases. Despite its significance, the domain of Arabic court analysis remains under-explored. This paper pioneers a comprehensive predictive analysis of Arabic court decisions on a dataset of 10,813 commercial court real cases, leveraging the advanced capabilities of the current state-of-the-art large language models. Through a systematic exploration, we evaluate three prevalent foundational models (LLaMA-7b, JAIS-13b, and GPT3.5-turbo) and three training paradigms: zero-shot, one-shot, and tailored fine-tuning. Besides, we assess the benefit of summarizing and/or translating the original Arabic input texts. This leads to a spectrum of 14 model variants, for which we offer a granular performance assessment with a series of different metrics (human assessment, GPT evaluation, ROUGE, and BLEU scores). We show that all variants of LLaMA models yield limited performance, whereas GPT-3.5-based models outperform all other models by a wide margin, surpassing the average score of the dedicated Arabic-centric JAIS model by 50%. Furthermore, we show that all scores except human evaluation are inconsistent and unreliable for assessing the performance of large language models on court decision predictions. This study paves the way for future research, bridging the gap between computational linguistics and Arabic legal analytics.
Abstract:In surveillance, accurately recognizing license plates is hindered by their often low quality and small dimensions, compromising recognition precision. Despite advancements in AI-based image super-resolution, methods like Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs) still fall short in enhancing license plate images. This study leverages the cutting-edge diffusion model, which has consistently outperformed other deep learning techniques in image restoration. By training this model using a curated dataset of Saudi license plates, both in low and high resolutions, we discovered the diffusion model's superior efficacy. The method achieves a 12.55\% and 37.32% improvement in Peak Signal-to-Noise Ratio (PSNR) over SwinIR and ESRGAN, respectively. Moreover, our method surpasses these techniques in terms of Structural Similarity Index (SSIM), registering a 4.89% and 17.66% improvement over SwinIR and ESRGAN, respectively. Furthermore, 92% of human evaluators preferred our images over those from other algorithms. In essence, this research presents a pioneering solution for license plate super-resolution, with tangible potential for surveillance systems.
Abstract:The Red Palm Weevil (RPW), also known as the palm weevil, is considered among the world's most damaging insect pests of palms. Current detection techniques include the detection of symptoms of RPW using visual or sound inspection and chemical detection of volatile signatures generated by infested palm trees. However, efficient detection of RPW diseases at an early stage is considered one of the most challenging issues for cultivating date palms. In this paper, an efficient approach to the early detection of RPW is proposed. The proposed approach is based on RPW sound activities being recorded and analyzed. The first step involves the conversion of sound data into images based on a selected set of features. The second step involves the combination of images from the same sound file but computed by different features into a single image. The third step involves the application of different Deep Learning (DL) techniques to classify resulting images into two classes: infested and not infested. Experimental results show good performances of the proposed approach for RPW detection using different DL techniques, namely MobileNetV2, ResNet50V2, ResNet152V2, VGG16, VGG19, DenseNet121, DenseNet201, Xception, and InceptionV3. The proposed approach outperformed existing techniques for public datasets.
Abstract:This paper introduces a novel algorithm for solving the point-to-point shortest path problem in a static regular 8-neighbor connectivity (G8) grid. This algorithm can be seen as a generalization of Hadlock algorithm to G8 grids, and is shown to be theoretically equivalent to the relaxed $A^*$ ($RA^*$) algorithm in terms of the provided solution's path length, but with substantial time and memory savings, due to a completely different computation strategy, based on defining a set of lookup matrices. Through an experimental study on grid maps of various types and sizes (1290 runs on 43 maps), it is proven to be 2.25 times faster than $RA^*$ and 17 times faster than the original $A^*$, in average. Moreover, it is more memory-efficient, since it does not need to store a G score matrix.
Abstract:Nowadays, diseases are increasing in numbers and severity by the hour. Immunity diseases, affecting 8\% of the world population in 2017 according to the World Health Organization (WHO), is a field in medicine worth attention due to the high rate of disease occurrence classified under this category. This work presents an up-to-date review of state-of-the-art immune diseases healthcare solutions. We focus on tackling the issue with modern solutions such as Deep Learning to detect anomalies in the early stages hence providing health practitioners with efficient tools. We rely on advanced deep learning techniques such as Convolutional Neural Networks (CNN) to fulfill our objective of providing an efficient tool while providing a proficient analysis of this solution. The proposed solution was tested and evaluated by the immunology department in the Principal Military Hospital of Instruction of Tunis, which considered it a very helpful tool.
Abstract:Since the release of ChatGPT, numerous studies have highlighted the remarkable performance of ChatGPT, which often rivals or even surpasses human capabilities in various tasks and domains. However, this paper presents a contrasting perspective by demonstrating an instance where human performance excels in typical tasks suited for ChatGPT, specifically in the domain of computer programming. We utilize the IEEExtreme Challenge competition as a benchmark, a prestigious, annual international programming contest encompassing a wide range of problems with different complexities. To conduct a thorough evaluation, we selected and executed a diverse set of 102 challenges, drawn from five distinct IEEExtreme editions, using three major programming languages: Python, Java, and C++. Our empirical analysis provides evidence that contrary to popular belief, human programmers maintain a competitive edge over ChatGPT in certain aspects of problem-solving within the programming context. In fact, we found that the average score obtained by ChatGPT on the set of IEEExtreme programming problems is 3.9 to 5.8 times lower than the average human score, depending on the programming language. This paper elaborates on these findings, offering critical insights into the limitations and potential areas of improvement for AI-based language models like ChatGPT.
Abstract:Smart traffic engineering and intelligent transportation services are in increasing demand from governmental authorities to optimize traffic performance and thus reduce energy costs, increase the drivers' safety and comfort, ensure traffic laws enforcement, and detect traffic violations. In this paper, we address this challenge, and we leverage the use of Artificial Intelligence (AI) and Unmanned Aerial Vehicles (UAVs) to develop an AI-integrated video analytics framework, called TAU (Traffic Analysis from UAVs), for automated traffic analytics and understanding. Unlike previous works on traffic video analytics, we propose an automated object detection and tracking pipeline from video processing to advanced traffic understanding using high-resolution UAV images. TAU combines six main contributions. First, it proposes a pre-processing algorithm to adapt the high-resolution UAV image as input to the object detector without lowering the resolution. This ensures an excellent detection accuracy from high-quality features, particularly the small size of detected objects from UAV images. Second, it introduces an algorithm for recalibrating the vehicle coordinates to ensure that vehicles are uniquely identified and tracked across the multiple crops of the same frame. Third, it presents a speed calculation algorithm based on accumulating information from successive frames. Fourth, TAU counts the number of vehicles per traffic zone based on the Ray Tracing algorithm. Fifth, TAU has a fully independent algorithm for crossroad arbitration based on the data gathered from the different zones surrounding it. Sixth, TAU introduces a set of algorithms for extracting twenty-four types of insights from the raw data collected. The code is shared here: https://github.com/bilel-bj/TAU. Video demonstrations are provided here: https://youtu.be/wXJV0H7LviU and here: https://youtu.be/kGv0gmtVEbI.
Abstract:With the number of vehicles continuously increasing, parking monitoring and analysis are becoming a substantial feature of modern cities. In this study, we present a methodology to monitor car parking areas and to analyze their occupancy in real-time. The solution is based on a combination between image analysis and deep learning techniques. It incorporates four building blocks put inside a pipeline: vehicle detection, vehicle tracking, manual annotation of parking slots, and occupancy estimation using the Ray Tracing algorithm. The aim of this methodology is to optimize the use of parking areas and to reduce the time wasted by daily drivers to find the right parking slot for their cars. Also, it helps to better manage the space of the parking areas and to discover misuse cases. A demonstration of the provided solution is shown in the following video link: https://www.youtube.com/watch?v=KbAt8zT14Tc.
Abstract:Deep learning (DL) is being increasingly utilized in healthcare-related fields due to its outstanding efficiency. However, we have to keep the individual health data used by DL models private and secure. Protecting data and preserving the privacy of individuals has become an increasingly prevalent issue. The gap between the DL and privacy communities must be bridged. In this paper, we propose privacy-preserving deep learning (PPDL)-based approach to secure the classification of Chest X-ray images. This study aims to use Chest X-ray images to their fullest potential without compromising the privacy of the data that it contains. The proposed approach is based on two steps: encrypting the dataset using partially homomorphic encryption and training/testing the DL algorithm over the encrypted images. Experimental results on the COVID-19 Radiography database show that the MobileNetV2 model achieves an accuracy of 94.2% over the plain data and 93.3% over the encrypted data.