Abstract:Cypher, the query language for Neo4j graph databases, plays a critical role in enabling graph-based analytics and data exploration. While substantial research has been dedicated to natural language to SQL query generation (Text2SQL), the analogous problem for graph databases referred to as Text2Cypher remains underexplored. In this work, we introduce SynthCypher, a fully synthetic and automated data generation pipeline designed to address this gap. SynthCypher employs a novel LLMSupervised Generation-Verification framework, ensuring syntactically and semantically correct Cypher queries across diverse domains and query complexities. Using this pipeline, we create SynthCypher Dataset, a large-scale benchmark containing 29.8k Text2Cypher instances. Fine-tuning open-source large language models (LLMs), including LLaMa-3.1- 8B, Mistral-7B, and QWEN-7B, on SynthCypher yields significant performance improvements of up to 40% on the Text2Cypher test set and 30% on the SPIDER benchmark adapted for graph databases. This work demonstrates that high-quality synthetic data can effectively advance the state-of-the-art in Text2Cypher tasks.
Abstract:This paper introduces a novel model compression approach through dynamic layer-specific pruning in Large Language Models (LLMs), enhancing the traditional methodology established by SliceGPT. By transitioning from constant to dynamic slicing, our method leverages the newly proposed Layer Redundancy (LR) score, which assesses how much change each layer changes its input by measuring the cosine similarity of the input to the output of the layer. We use this score to prune parts of individual layers based on redundancy in such a way that the average pruned percentage for all layers is a fixed value. We conducted extensive experiments using models like Llama3-8B and Mistral-7B on multiple datasets, evaluating different slicing bases and percentages to determine optimal configurations that balance efficiency and performance. Our findings show that our dynamic slicing approach not only maintains but, in many cases, enhances model performance compared to the baseline established by constant slicing methods. For instance, in several settings, we see performance improvements of up to 5% over the SliceGPT baseline. Additionally, a perplexity decrease by as much as 7% was observed across multiple benchmarks, validating the effectiveness of our method. The code, model weights, and datasets are open-sourced at https://github.com/RazvanDu/DynamicSlicing.
Abstract:Multilingual LLMs have achieved remarkable benchmark performance, but we find they continue to underperform on non-Latin script languages across contemporary LLM families. This discrepancy arises from the fact that LLMs are pretrained with orthographic scripts, which are dominated by Latin characters that obscure their shared phonology with non-Latin scripts. We propose leveraging phonemic transcriptions as complementary signals to induce script-invariant representations. Our study demonstrates that integrating phonemic signals improves performance across both non-Latin and Latin languages, with a particularly significant impact on closing the performance gap between the two. Through detailed experiments, we show that phonemic and orthographic scripts retrieve distinct examples for in-context learning (ICL). This motivates our proposed Mixed-ICL retrieval strategy, where further aggregation leads to our significant performance improvements for both Latin script languages (up to 12.6%) and non-Latin script languages (up to 15.1%) compared to randomized ICL retrieval.
Abstract:In this work, we introduce Gemma 2, a new addition to the Gemma family of lightweight, state-of-the-art open models, ranging in scale from 2 billion to 27 billion parameters. In this new version, we apply several known technical modifications to the Transformer architecture, such as interleaving local-global attentions (Beltagy et al., 2020a) and group-query attention (Ainslie et al., 2023). We also train the 2B and 9B models with knowledge distillation (Hinton et al., 2015) instead of next token prediction. The resulting models deliver the best performance for their size, and even offer competitive alternatives to models that are 2-3 times bigger. We release all our models to the community.
Abstract:As Large Language Models (LLMs) achieve remarkable performance across various NLP tasks, their reliability becomes essential for widespread adoption. This paper focuses on Abstention Ability (AA), a critical yet under explored aspect of reliability - the ability of LLMs to refrain from answering questions when they are uncertain or when definitive answer is not possible, while maintaining question-answering (QA) task performance. While previous works have focused on understanding the recollection abilities of LLMs or their ability to identify imponderable/unanswerable questions, we believe there is a need for an effective AA evaluation method. Therefore, we propose a black-box evaluation methodology to examine and understand the AA of LLMs across a variety of multiple-choice QA tasks. We measure AA by rewarding models for abstaining from answering when their predictions are incorrect or when the questions are inherently unanswerable. We investigate three strategies, Strict Prompting, Verbal Confidence Thresholding, and Chain-of-Thought (CoT), to understand their impact on abstention across different LLMs. Our findings reveal that while even state-of-the-art LLMs like GPT-4 struggle with abstention, strategic prompting such as CoT, can significantly enhance this ability. Furthermore, we demonstrate that improving AA also leads to better overall QA task performance, underscoring the importance of evaluating AA in LLMs.
Abstract:We present a simple variable quantization approach that quantizes different layers of a large language model (LLM) at different bit levels. Specifically, we quantize the most important layers to higher bit precision and less important layers to lower bits to achieve floating point quantization levels. We propose two effective strategies to measure the importance of layers within LLMs: the first measures the importance of a layer based on how different its output embeddings are from the input embeddings (the higher the better); the second estimates the importance of a layer using the number of layer weights that are much larger than average (the smaller the better). We show that quantizing different layers at varying bits according to our importance scores results in minimal performance drop with a far more compressed model size. Finally, we present several practical key takeaways from our variable layer-wise quantization experiments: (a) LLM performance under variable quantization remains close to the original model until 25-50% of layers are moved in lower quantization using our proposed ordering but only until 5-10% if moved using no specific ordering; (b) Quantizing LLMs to lower bits performs substantially better than pruning unless extreme quantization (2-bit) is used; and (c) Layer-wise quantization to lower bits works better in the case of larger LLMs with more layers compared to smaller LLMs with fewer layers. The code used to run the experiments is available at: https://github.com/RazvanDu/LayerwiseQuant.
Abstract:Question Answer Generation (QAG) is an effective data augmentation technique to improve the accuracy of question answering systems, especially in low-resource domains. While recent pretrained and large language model-based QAG methods have made substantial progress, they face the critical issue of redundant QA pair generation, affecting downstream QA systems. Implicit diversity techniques such as sampling and diverse beam search are proven effective solutions but often yield smaller diversity. We present explicit diversity conditions for QAG, focusing on spatial aspects, question types, and entities, substantially increasing diversity in QA generation. Our work emphasizes the need of explicit diversity conditions for generating diverse question-answer synthetic data by showing significant improvements in downstream QA task over existing widely adopted implicit diversity techniques. In particular, generated QA pairs from explicit diversity conditions when used to train the downstream QA model results in an average 4.1% exact match and 4.5% F1 improvement over QAG from implicit sampling techniques on SQuADDU. Our work emphasizes the need for explicit diversity conditions even more in low-resource datasets (SubjQA), where average downstream QA performance improvements are around 12% EM.
Abstract:Instruction finetuning (IFT) is critical for aligning Large Language Models (LLMs) to follow instructions. Numerous effective IFT datasets have been proposed in the recent past, but most focus on high resource languages such as English. In this work, we propose a fully synthetic, novel taxonomy (Evol) guided Multilingual, Multi-turn instruction finetuning dataset, called M2Lingual, to better align LLMs on a diverse set of languages and tasks. M2Lingual contains a total of 182K IFT pairs that are built upon diverse seeds, covering 70 languages, 17 NLP tasks and general instruction-response pairs. LLMs finetuned with M2Lingual substantially outperform the majority of existing multilingual IFT datasets. Importantly, LLMs trained with M2Lingual consistently achieve competitive results across a wide variety of evaluation benchmarks compared to existing multilingual IFT datasets. Specifically, LLMs finetuned with M2Lingual achieve strong performance on our translated multilingual, multi-turn evaluation benchmark as well as a wide variety of multilingual tasks. Thus we contribute, and the 2 step Evol taxonomy used for its creation. M2Lingual repository - https://huggingface.co/datasets/ServiceNow-AI/M2Lingual
Abstract:Large language models (LLM) have achieved remarkable success in natural language generation but lesser focus has been given to their applicability in decision making tasks such as classification. We show that LLMs like LLaMa can achieve high performance on large multi-class classification tasks but still make classification errors and worse, generate out-of-vocabulary class labels. To address these critical issues, we introduce Paraphrase and AGgregate (PAG)-LLM approach wherein an LLM generates multiple paraphrases of the input query (parallel queries), performs multi-class classification for the original query and each paraphrase, and at the end aggregate all the classification labels based on their confidence scores. We evaluate PAG-LLM on two large multi-class classication datasets: CLINC, and Banking and show 22.7% and 15.1% error reduction. We show that PAG-LLM is especially effective for hard examples where LLM is uncertain, and reduces the critical misclassification and hallucinated label generation errors
Abstract:Direct Preference Optimization (DPO) is an effective technique that leverages pairwise preference data (usually one chosen and rejected response pair per user prompt) to align LLMs to human preferences. In practice, multiple responses can exist for a given prompt with varying quality relative to each other. With availability of such quality ratings for multiple responses, we propose utilizing these responses to create multiple preference pairs for a given prompt. Our work focuses on systematically using the constructed multiple preference pair in DPO training via curriculum learning methodology. In particular, we order these multiple pairs of preference data from easy to hard (emulating curriculum training) according to various criteria. We show detailed comparisons of our proposed approach to the standard single-pair DPO setting. Our method, which we call Curry-DPO consistently shows increased performance gains on MTbench, Vicuna, WizardLM, and the UltraFeedback test set, highlighting its effectiveness. More specifically, Curry-DPO achieves a score of 7.43 on MT-bench with Zephy-7B model outperforming majority of existing LLMs with similar parameter size. Curry-DPO also achieves the highest adjusted win rates on Vicuna, WizardLM, and UltraFeedback test datasets (90.7%, 87.1%, and 87.9% respectively) in our experiments, with notable gains of upto 7.5% when compared to standard DPO technique.