Abstract:Existing benchmarks are becoming saturated and struggle to separate model performances due to factors like data contamination and advancing LLM capabilities. This paper introduces EMDM (Enhanced Model Differentiation Metric), a novel weighted metric that revitalizes benchmarks by enhancing model separation. EMDM integrates final answer and Chain-of-Thought (CoT) reasoning correctness, assigning weights based on the complexity and reasoning depth required to solve a given sample in the evaluation data. Using a baseline LLM in two setups-Unguided, where the model has no prior exposure to test samples, and Guided, where the model has prior knowledge of the desired answer-EMDM distinguishes instances of varying difficulty. The CoT and answer correctness from these setups inform an optimization objective for weight assignment, resulting in a more nuanced evaluation of model performance. Compared to the exact match (EM) metric, which achieves 17% separation on ARC-Challenge, EMDM achieves 46%, demonstrating its effectiveness in differentiating models based on reasoning and knowledge requirements.
Abstract:As Large Language Models (LLMs) achieve remarkable performance across various NLP tasks, their reliability becomes essential for widespread adoption. This paper focuses on Abstention Ability (AA), a critical yet under explored aspect of reliability - the ability of LLMs to refrain from answering questions when they are uncertain or when definitive answer is not possible, while maintaining question-answering (QA) task performance. While previous works have focused on understanding the recollection abilities of LLMs or their ability to identify imponderable/unanswerable questions, we believe there is a need for an effective AA evaluation method. Therefore, we propose a black-box evaluation methodology to examine and understand the AA of LLMs across a variety of multiple-choice QA tasks. We measure AA by rewarding models for abstaining from answering when their predictions are incorrect or when the questions are inherently unanswerable. We investigate three strategies, Strict Prompting, Verbal Confidence Thresholding, and Chain-of-Thought (CoT), to understand their impact on abstention across different LLMs. Our findings reveal that while even state-of-the-art LLMs like GPT-4 struggle with abstention, strategic prompting such as CoT, can significantly enhance this ability. Furthermore, we demonstrate that improving AA also leads to better overall QA task performance, underscoring the importance of evaluating AA in LLMs.