Abstract:Recent advances in generative AI have precipitated a proliferation of novel writing assistants. These systems typically rely on multilingual large language models (LLMs), providing globalized workers the ability to revise or create diverse forms of content in different languages. However, there is substantial evidence indicating that the performance of multilingual LLMs varies between languages. Users who employ writing assistance for multiple languages are therefore susceptible to disparate output quality. Importantly, recent research has shown that people tend to generalize algorithmic errors across independent tasks, violating the behavioral axiom of choice independence. In this paper, we analyze whether user utilization of novel writing assistants in a charity advertisement writing task is affected by the AI's performance in a second language. Furthermore, we quantify the extent to which these patterns translate into the persuasiveness of generated charity advertisements, as well as the role of peoples' beliefs about LLM utilization in their donation choices. Our results provide evidence that writers who engage with an LLM-based writing assistant violate choice independence, as prior exposure to a Spanish LLM reduces subsequent utilization of an English LLM. While these patterns do not affect the aggregate persuasiveness of the generated advertisements, people's beliefs about the source of an advertisement (human versus AI) do. In particular, Spanish-speaking female participants who believed that they read an AI-generated advertisement strongly adjusted their donation behavior downwards. Furthermore, people are generally not able to adequately differentiate between human-generated and LLM-generated ads. Our work has important implications for the design, development, integration, and adoption of multilingual LLMs as assistive agents -- particularly in writing tasks.
Abstract:Since the explosion in popularity of ChatGPT, large language models (LLMs) have continued to impact our everyday lives. Equipped with external tools that are designed for a specific purpose (e.g., for flight booking or an alarm clock), LLM agents exercise an increasing capability to assist humans in their daily work. Although LLM agents have shown a promising blueprint as daily assistants, there is a limited understanding of how they can provide daily assistance based on planning and sequential decision making capabilities. We draw inspiration from recent work that has highlighted the value of 'LLM-modulo' setups in conjunction with humans-in-the-loop for planning tasks. We conducted an empirical study (N = 248) of LLM agents as daily assistants in six commonly occurring tasks with different levels of risk typically associated with them (e.g., flight ticket booking and credit card payments). To ensure user agency and control over the LLM agent, we adopted LLM agents in a plan-then-execute manner, wherein the agents conducted step-wise planning and step-by-step execution in a simulation environment. We analyzed how user involvement at each stage affects their trust and collaborative team performance. Our findings demonstrate that LLM agents can be a double-edged sword -- (1) they can work well when a high-quality plan and necessary user involvement in execution are available, and (2) users can easily mistrust the LLM agents with plans that seem plausible. We synthesized key insights for using LLM agents as daily assistants to calibrate user trust and achieve better overall task outcomes. Our work has important implications for the future design of daily assistants and human-AI collaboration with LLM agents.
Abstract:Explainable artificial intelligence (XAI) methods are being proposed to help interpret and understand how AI systems reach specific predictions. Inspired by prior work on conversational user interfaces, we argue that augmenting existing XAI methods with conversational user interfaces can increase user engagement and boost user understanding of the AI system. In this paper, we explored the impact of a conversational XAI interface on users' understanding of the AI system, their trust, and reliance on the AI system. In comparison to an XAI dashboard, we found that the conversational XAI interface can bring about a better understanding of the AI system among users and higher user trust. However, users of both the XAI dashboard and conversational XAI interfaces showed clear overreliance on the AI system. Enhanced conversations powered by large language model (LLM) agents amplified over-reliance. Based on our findings, we reason that the potential cause of such overreliance is the illusion of explanatory depth that is concomitant with both XAI interfaces. Our findings have important implications for designing effective conversational XAI interfaces to facilitate appropriate reliance and improve human-AI collaboration. Code can be found at https://github.com/delftcrowd/IUI2025_ConvXAI
Abstract:In recent years, the rapid development of AI systems has brought about the benefits of intelligent services but also concerns about security and reliability. By fostering appropriate user reliance on an AI system, both complementary team performance and reduced human workload can be achieved. Previous empirical studies have extensively analyzed the impact of factors ranging from task, system, and human behavior on user trust and appropriate reliance in the context of one-step decision making. However, user reliance on AI systems in tasks with complex semantics that require multi-step workflows remains under-explored. Inspired by recent work on task decomposition with large language models, we propose to investigate the impact of a novel Multi-Step Transparent (MST) decision workflow on user reliance behaviors. We conducted an empirical study (N = 233) of AI-assisted decision making in composite fact-checking tasks (i.e., fact-checking tasks that entail multiple sub-fact verification steps). Our findings demonstrate that human-AI collaboration with an MST decision workflow can outperform one-step collaboration in specific contexts (e.g., when advice from an AI system is misleading). Further analysis of the appropriate reliance at fine-grained levels indicates that an MST decision workflow can be effective when users demonstrate a relatively high consideration of the intermediate steps. Our work highlights that there is no one-size-fits-all decision workflow that can help obtain optimal human-AI collaboration. Our insights help deepen the understanding of the role of decision workflows in facilitating appropriate reliance. We synthesize important implications for designing effective means to facilitate appropriate reliance on AI systems in composite tasks, positioning opportunities for the human-centered AI and broader HCI communities.
Abstract:Powerful predictive AI systems have demonstrated great potential in augmenting human decision making. Recent empirical work has argued that the vision for optimal human-AI collaboration requires 'appropriate reliance' of humans on AI systems. However, accurately estimating the trustworthiness of AI advice at the instance level is quite challenging, especially in the absence of performance feedback pertaining to the AI system. In practice, the performance disparity of machine learning models on out-of-distribution data makes the dataset-specific performance feedback unreliable in human-AI collaboration. Inspired by existing literature on critical thinking and a critical mindset, we propose the use of debugging an AI system as an intervention to foster appropriate reliance. In this paper, we explore whether a critical evaluation of AI performance within a debugging setting can better calibrate users' assessment of an AI system and lead to more appropriate reliance. Through a quantitative empirical study (N = 234), we found that our proposed debugging intervention does not work as expected in facilitating appropriate reliance. Instead, we observe a decrease in reliance on the AI system after the intervention -- potentially resulting from an early exposure to the AI system's weakness. We explore the dynamics of user confidence and user estimation of AI trustworthiness across groups with different performance levels to help explain how inappropriate reliance patterns occur. Our findings have important implications for designing effective interventions to facilitate appropriate reliance and better human-AI collaboration.
Abstract:This workshop will grow and consolidate a community of interdisciplinary CSCW researchers focusing on the topic of contestable AI. As an outcome of the workshop, we will synthesize the most pressing opportunities and challenges for contestability along AI value chains in the form of a research roadmap. This roadmap will help shape and inspire imminent work in this field. Considering the length and depth of AI value chains, it will especially spur discussions around the contestability of AI systems along various sites of such chains. The workshop will serve as a platform for dialogue and demonstrations of concrete, successful, and unsuccessful examples of AI systems that (could or should) have been contested, to identify requirements, obstacles, and opportunities for designing and deploying contestable AI in various contexts. This will be held primarily as an in-person workshop, with some hybrid accommodation. The day will consist of individual presentations and group activities to stimulate ideation and inspire broad reflections on the field of contestable AI. Our aim is to facilitate interdisciplinary dialogue by bringing together researchers, practitioners, and stakeholders to foster the design and deployment of contestable AI.
Abstract:With the widespread proliferation of AI systems, trust in AI is an important and timely topic to navigate. Researchers so far have largely employed a myopic view of this relationship. In particular, a limited number of relevant trustors (e.g., end-users) and trustees (i.e., AI systems) have been considered, and empirical explorations have remained in laboratory settings, potentially overlooking factors that impact human-AI relationships in the real world. In this paper, we argue for broadening the scope of studies addressing `trust in AI' by accounting for the complex and dynamic supply chains that AI systems result from. AI supply chains entail various technical artifacts that diverse individuals, organizations, and stakeholders interact with, in a variety of ways. We present insights from an in-situ, empirical study of LLM supply chains. Our work reveals additional types of trustors and trustees and new factors impacting their trust relationships. These relationships were found to be central to the development and adoption of LLMs, but they can also be the terrain for uncalibrated trust and reliance on untrustworthy LLMs. Based on these findings, we discuss the implications for research on `trust in AI'. We highlight new research opportunities and challenges concerning the appropriate study of inter-actor relationships across the supply chain and the development of calibrated trust and meaningful reliance behaviors. We also question the meaning of building trust in the LLM supply chain.
Abstract:Existing research in measuring and mitigating gender bias predominantly centers on English, overlooking the intricate challenges posed by non-English languages and the Global South. This paper presents the first comprehensive study delving into the nuanced landscape of gender bias in Hindi, the third most spoken language globally. Our study employs diverse mining techniques, computational models, field studies and sheds light on the limitations of current methodologies. Given the challenges faced with mining gender biased statements in Hindi using existing methods, we conducted field studies to bootstrap the collection of such sentences. Through field studies involving rural and low-income community women, we uncover diverse perceptions of gender bias, underscoring the necessity for context-specific approaches. This paper advocates for a community-centric research design, amplifying voices often marginalized in previous studies. Our findings not only contribute to the understanding of gender bias in Hindi but also establish a foundation for further exploration of Indic languages. By exploring the intricacies of this understudied context, we call for thoughtful engagement with gender bias, promoting inclusivity and equity in linguistic and cultural contexts beyond the Global North.
Abstract:We are amidst an explosion of artificial intelligence research, particularly around large language models (LLMs). These models have a range of applications across domains like medicine, finance, commonsense knowledge graphs, and crowdsourcing. Investigation into LLMs as part of crowdsourcing workflows remains an under-explored space. The crowdsourcing research community has produced a body of work investigating workflows and methods for managing complex tasks using hybrid human-AI methods. Within crowdsourcing, the role of LLMs can be envisioned as akin to a cog in a larger wheel of workflows. From an empirical standpoint, little is currently understood about how LLMs can improve the effectiveness of crowdsourcing workflows and how such workflows can be evaluated. In this work, we present a vision for exploring this gap from the perspectives of various stakeholders involved in the crowdsourcing paradigm -- the task requesters, crowd workers, platforms, and end-users. We identify junctures in typical crowdsourcing workflows at which the introduction of LLMs can play a beneficial role and propose means to augment existing design patterns for crowd work.
Abstract:The dazzling promises of AI systems to augment humans in various tasks hinge on whether humans can appropriately rely on them. Recent research has shown that appropriate reliance is the key to achieving complementary team performance in AI-assisted decision making. This paper addresses an under-explored problem of whether the Dunning-Kruger Effect (DKE) among people can hinder their appropriate reliance on AI systems. DKE is a metacognitive bias due to which less-competent individuals overestimate their own skill and performance. Through an empirical study (N = 249), we explored the impact of DKE on human reliance on an AI system, and whether such effects can be mitigated using a tutorial intervention that reveals the fallibility of AI advice, and exploiting logic units-based explanations to improve user understanding of AI advice. We found that participants who overestimate their performance tend to exhibit under-reliance on AI systems, which hinders optimal team performance. Logic units-based explanations did not help users in either improving the calibration of their competence or facilitating appropriate reliance. While the tutorial intervention was highly effective in helping users calibrate their self-assessment and facilitating appropriate reliance among participants with overestimated self-assessment, we found that it can potentially hurt the appropriate reliance of participants with underestimated self-assessment. Our work has broad implications on the design of methods to tackle user cognitive biases while facilitating appropriate reliance on AI systems. Our findings advance the current understanding of the role of self-assessment in shaping trust and reliance in human-AI decision making. This lays out promising future directions for relevant HCI research in this community.