Abstract:The true potential of human-AI collaboration lies in exploiting the complementary capabilities of humans and AI to achieve a joint performance superior to that of the individual AI or human, i.e., to achieve complementary team performance (CTP). To realize this complementarity potential, humans need to exercise discretion in following AI 's advice, i.e., appropriately relying on the AI's advice. While previous work has focused on building a mental model of the AI to assess AI recommendations, recent research has shown that the mental model alone cannot explain appropriate reliance. We hypothesize that, in addition to the mental model, human learning is a key mediator of appropriate reliance and, thus, CTP. In this study, we demonstrate the relationship between learning and appropriate reliance in an experiment with 100 participants. This work provides fundamental concepts for analyzing reliance and derives implications for the effective design of human-AI decision-making.
Abstract:Recent work has proposed artificial intelligence (AI) models that can learn to decide whether to make a prediction for an instance of a task or to delegate it to a human by considering both parties' capabilities. In simulations with synthetically generated or context-independent human predictions, delegation can help improve the performance of human-AI teams -- compared to humans or the AI model completing the task alone. However, so far, it remains unclear how humans perform and how they perceive the task when they are aware that an AI model delegated task instances to them. In an experimental study with 196 participants, we show that task performance and task satisfaction improve through AI delegation, regardless of whether humans are aware of the delegation. Additionally, we identify humans' increased levels of self-efficacy as the underlying mechanism for these improvements in performance and satisfaction. Our findings provide initial evidence that allowing AI models to take over more management responsibilities can be an effective form of human-AI collaboration in workplaces.
Abstract:Detecting rare events is essential in various fields, e.g., in cyber security or maintenance. Often, human experts are supported by anomaly detection systems as continuously monitoring the data is an error-prone and tedious task. However, among the anomalies detected may be events that are rare, e.g., a planned shutdown of a machine, but are not the actual event of interest, e.g., breakdowns of a machine. Therefore, human experts are needed to validate whether the detected anomalies are relevant. We propose to support this anomaly investigation by providing explanations of anomaly detection. Related work only focuses on the technical implementation of explainable anomaly detection and neglects the subsequent human anomaly investigation. To address this research gap, we conduct a behavioral experiment using records of taxi rides in New York City as a testbed. Participants are asked to differentiate extreme weather events from other anomalous events such as holidays or sporting events. Our results show that providing counterfactual explanations do improve the investigation of anomalies, indicating potential for explainable anomaly detection in general.
Abstract:AI advice is becoming increasingly popular, e.g., in investment and medical treatment decisions. As this advice is typically imperfect, decision-makers have to exert discretion as to whether actually follow that advice: they have to "appropriately" rely on correct and turn down incorrect advice. However, current research on appropriate reliance still lacks a common definition as well as an operational measurement concept. Additionally, no in-depth behavioral experiments have been conducted that help understand the factors influencing this behavior. In this paper, we propose Appropriateness of Reliance (AoR) as an underlying, quantifiable two-dimensional measurement concept. We develop a research model that analyzes the effect of providing explanations for AI advice. In an experiment with 200 participants, we demonstrate how these explanations influence the AoR, and, thus, the effectiveness of AI advice. Our work contributes fundamental concepts for the analysis of reliance behavior and the purposeful design of AI advisors.
Abstract:Research in Artificial Intelligence (AI)-assisted decision-making is experiencing tremendous growth with a constantly rising number of studies evaluating the effect of AI with and without techniques from the field of explainable AI (XAI) on human decision-making performance. However, as tasks and experimental setups vary due to different objectives, some studies report improved user decision-making performance through XAI, while others report only negligible effects. Therefore, in this article, we present an initial synthesis of existing research on XAI studies using a statistical meta-analysis to derive implications across existing research. We observe a statistically positive impact of XAI on users' performance. Additionally, first results might indicate that human-AI decision-making yields better task performance on text data. However, we find no effect of explanations on users' performance compared to sole AI predictions. Our initial synthesis gives rise to future research to investigate the underlying causes as well as contribute to further development of algorithms that effectively benefit human decision-makers in the form of explanations.
Abstract:Over the last years, the rising capabilities of artificial intelligence (AI) have improved human decision-making in many application areas. Teaming between AI and humans may even lead to complementary team performance (CTP), i.e., a level of performance beyond the ones that can be reached by AI or humans individually. Many researchers have proposed using explainable AI (XAI) to enable humans to rely on AI advice appropriately and thereby reach CTP. However, CTP is rarely demonstrated in previous work as often the focus is on the design of explainability, while a fundamental prerequisite -- the presence of complementarity potential between humans and AI -- is often neglected. Therefore, we focus on the existence of this potential for effective human-AI decision-making. Specifically, we identify information asymmetry as an essential source of complementarity potential, as in many real-world situations, humans have access to different contextual information. By conducting an online experiment, we demonstrate that humans can use such contextual information to adjust the AI's decision, finally resulting in CTP.
Abstract:Recent developments in Artificial Intelligence (AI) have fueled the emergence of human-AI collaboration, a setting where AI is a coequal partner. Especially in clinical decision-making, it has the potential to improve treatment quality by assisting overworked medical professionals. Even though research has started to investigate the utilization of AI for clinical decision-making, its potential benefits do not imply its adoption by medical professionals. While several studies have started to analyze adoption criteria from a technical perspective, research providing a human-centered perspective with a focus on AI's potential for becoming a coequal team member in the decision-making process remains limited. Therefore, in this work, we identify factors for the adoption of human-AI collaboration by conducting a series of semi-structured interviews with experts in the healthcare domain. We identify six relevant adoption factors and highlight existing tensions between them and effective human-AI collaboration.
Abstract:Artificial intelligence (AI) is gaining momentum, and its importance for the future of work in many areas, such as medicine and banking, is continuously rising. However, insights on the effective collaboration of humans and AI are still rare. Typically, AI supports humans in decision-making by addressing human limitations. However, it may also evoke human bias, especially in the form of automation bias as an over-reliance on AI advice. We aim to shed light on the potential to influence automation bias by explainable AI (XAI). In this pre-test, we derive a research model and describe our study design. Subsequentially, we conduct an online experiment with regard to hotel review classifications and discuss first results. We expect our research to contribute to the design and development of safe hybrid intelligence systems.
Abstract:Many important decisions in daily life are made with the help of advisors, e.g., decisions about medical treatments or financial investments. Whereas in the past, advice has often been received from human experts, friends, or family, advisors based on artificial intelligence (AI) have become more and more present nowadays. Typically, the advice generated by AI is judged by a human and either deemed reliable or rejected. However, recent work has shown that AI advice is not always beneficial, as humans have shown to be unable to ignore incorrect AI advice, essentially representing an over-reliance on AI. Therefore, the aspired goal should be to enable humans not to rely on AI advice blindly but rather to distinguish its quality and act upon it to make better decisions. Specifically, that means that humans should rely on the AI in the presence of correct advice and self-rely when confronted with incorrect advice, i.e., establish appropriate reliance (AR) on AI advice on a case-by-case basis. Current research lacks a metric for AR. This prevents a rigorous evaluation of factors impacting AR and hinders further development of human-AI decision-making. Therefore, based on the literature, we derive a measurement concept of AR. We propose to view AR as a two-dimensional construct that measures the ability to discriminate advice quality and behave accordingly. In this article, we derive the measurement concept, illustrate its application and outline potential future research.
Abstract:While recent advances in AI-based automated decision-making have shown many benefits for businesses and society, they also come at a cost. It has for long been known that a high level of automation of decisions can lead to various drawbacks, such as automation bias and deskilling. In particular, the deskilling of knowledge workers is a major issue, as they are the same people who should also train, challenge and evolve AI. To address this issue, we conceptualize a new class of DSS, namely Intelligent Decision Assistance (IDA) based on a literature review of two different research streams -- DSS and automation. IDA supports knowledge workers without influencing them through automated decision-making. Specifically, we propose to use techniques of Explainable AI (XAI) while withholding concrete AI recommendations. To test this conceptualization, we develop hypotheses on the impacts of IDA and provide first evidence for their validity based on empirical studies in the literature.