Delft University of Technology, Leiden University
Abstract:The research field of automated negotiation has a long history of designing agents that can negotiate with other agents. Such negotiation strategies are traditionally based on manual design and heuristics. More recently, reinforcement learning approaches have also been used to train agents to negotiate. However, negotiation problems are diverse, causing observation and action dimensions to change, which cannot be handled by default linear policy networks. Previous work on this topic has circumvented this issue either by fixing the negotiation problem, causing policies to be non-transferable between negotiation problems or by abstracting the observations and actions into fixed-size representations, causing loss of information and expressiveness due to feature design. We developed an end-to-end reinforcement learning method for diverse negotiation problems by representing observations and actions as a graph and applying graph neural networks in the policy. With empirical evaluations, we show that our method is effective and that we can learn to negotiate with other agents on never-before-seen negotiation problems. Our result opens up new opportunities for reinforcement learning in negotiation agents.
Abstract:Large-scale survey tools enable the collection of citizen feedback in opinion corpora. Extracting the key arguments from a large and noisy set of opinions helps in understanding the opinions quickly and accurately. Fully automated methods can extract arguments but (1) require large labeled datasets that induce large annotation costs and (2) work well for known viewpoints, but not for novel points of view. We propose HyEnA, a hybrid (human + AI) method for extracting arguments from opinionated texts, combining the speed of automated processing with the understanding and reasoning capabilities of humans. We evaluate HyEnA on three citizen feedback corpora. We find that, on the one hand, HyEnA achieves higher coverage and precision than a state-of-the-art automated method when compared to a common set of diverse opinions, justifying the need for human insight. On the other hand, HyEnA requires less human effort and does not compromise quality compared to (fully manual) expert analysis, demonstrating the benefit of combining human and artificial intelligence.
Abstract:Understanding citizens' values in participatory systems is crucial for citizen-centric policy-making. We envision a hybrid participatory system where participants make choices and provide motivations for those choices, and AI agents estimate their value preferences by interacting with them. We focus on situations where a conflict is detected between participants' choices and motivations, and propose methods for estimating value preferences while addressing detected inconsistencies by interacting with the participants. We operationalize the philosophical stance that "valuing is deliberatively consequential." That is, if a participant's choice is based on a deliberation of value preferences, the value preferences can be observed in the motivation the participant provides for the choice. Thus, we propose and compare value estimation methods that prioritize the values estimated from motivations over the values estimated from choices alone. Then, we introduce a disambiguation strategy that addresses the detected inconsistencies between choices and motivations by directly interacting with the participants. We evaluate the proposed methods on a dataset of a large-scale survey on energy transition. The results show that explicitly addressing inconsistencies between choices and motivations improves the estimation of an individual's value preferences. The disambiguation strategy does not show substantial improvements when compared to similar baselines--however, we discuss how the novelty of the approach can open new research avenues and propose improvements to address the current limitations.
Abstract:Presenting high-level arguments is a crucial task for fostering participation in online societal discussions. Current argument summarization approaches miss an important facet of this task -- capturing diversity -- which is important for accommodating multiple perspectives. We introduce three aspects of diversity: those of opinions, annotators, and sources. We evaluate approaches to a popular argument summarization task called Key Point Analysis, which shows how these approaches struggle to (1) represent arguments shared by few people, (2) deal with data from various sources, and (3) align with subjectivity in human-provided annotations. We find that both general-purpose LLMs and dedicated KPA models exhibit this behavior, but have complementary strengths. Further, we observe that diversification of training data may ameliorate generalization. Addressing diversity in argument summarization requires a mix of strategies to deal with subjectivity.
Abstract:Appropriate Trust in Artificial Intelligence (AI) systems has rapidly become an important area of focus for both researchers and practitioners. Various approaches have been used to achieve it, such as confidence scores, explanations, trustworthiness cues, or uncertainty communication. However, a comprehensive understanding of the field is lacking due to the diversity of perspectives arising from various backgrounds that influence it and the lack of a single definition for appropriate trust. To investigate this topic, this paper presents a systematic review to identify current practices in building appropriate trust, different ways to measure it, types of tasks used, and potential challenges associated with it. We also propose a Belief, Intentions, and Actions (BIA) mapping to study commonalities and differences in the concepts related to appropriate trust by (a) describing the existing disagreements on defining appropriate trust, and (b) providing an overview of the concepts and definitions related to appropriate trust in AI from the existing literature. Finally, the challenges identified in studying appropriate trust are discussed, and observations are summarized as current trends, potential gaps, and research opportunities for future work. Overall, the paper provides insights into the complex concept of appropriate trust in human-AI interaction and presents research opportunities to advance our understanding on this topic.
Abstract:Disagreements are common in online discussions. Disagreement may foster collaboration and improve the quality of a discussion under some conditions. Although there exist methods for recognizing disagreement, a deeper understanding of factors that influence disagreement is lacking in the literature. We investigate a hypothesis that differences in personal values are indicative of disagreement in online discussions. We show how state-of-the-art models can be used for estimating values in online discussions and how the estimated values can be aggregated into value profiles. We evaluate the estimated value profiles based on human-annotated agreement labels. We find that the dissimilarity of value profiles correlates with disagreement in specific cases. We also find that including value information in agreement prediction improves performance.
Abstract:With the growing capabilities and pervasiveness of AI systems, societies must collectively choose between reduced human autonomy, endangered democracies and limited human rights, and AI that is aligned to human and social values, nurturing collaboration, resilience, knowledge and ethical behaviour. In this chapter, we introduce the notion of self-reflective AI systems for meaningful human control over AI systems. Focusing on decision support systems, we propose a framework that integrates knowledge from psychology and philosophy with formal reasoning methods and machine learning approaches to create AI systems responsive to human values and social norms. We also propose a possible research approach to design and develop self-reflective capability in AI systems. Finally, we argue that self-reflective AI systems can lead to self-reflective hybrid systems (human + AI), thus increasing meaningful human control and empowering human moral reasoning by providing comprehensible information and insights on possible human moral blind spots.
Abstract:AI alignment is about ensuring AI systems only pursue goals and activities that are beneficial to humans. Most of the current approach to AI alignment is to learn what humans value from their behavioural data. This paper proposes a different way of looking at the notion of alignment, namely by introducing AI Alignment Dialogues: dialogues with which users and agents try to achieve and maintain alignment via interaction. We argue that alignment dialogues have a number of advantages in comparison to data-driven approaches, especially for behaviour support agents, which aim to support users in achieving their desired future behaviours rather than their current behaviours. The advantages of alignment dialogues include allowing the users to directly convey higher-level concepts to the agent, and making the agent more transparent and trustworthy. In this paper we outline the concept and high-level structure of alignment dialogues. Moreover, we conducted a qualitative focus group user study from which we developed a model that describes how alignment dialogues affect users, and created design suggestions for AI alignment dialogues. Through this we establish foundations for AI alignment dialogues and shed light on what requires further development and research.
Abstract:The rapid development of Artificial Intelligence (AI) requires developers and designers of AI systems to focus on the collaboration between humans and machines. AI explanations of system behavior and reasoning are vital for effective collaboration by fostering appropriate trust, ensuring understanding, and addressing issues of fairness and bias. However, various contextual and subjective factors can influence an AI system explanation's effectiveness. This work draws inspiration from findings in cognitive psychology to understand how effective explanations can be designed. We identify four components to which explanation designers can pay special attention: perception, semantics, intent, and user & context. We illustrate the use of these four explanation components with an example of estimating food calories by combining text with visuals, probabilities with exemplars, and intent communication with both user and context in mind. We propose that the significant challenge for effective AI explanations is an additional step between explanation generation using algorithms not producing interpretable explanations and explanation communication. We believe this extra step will benefit from carefully considering the four explanation components outlined in our work, which can positively affect the explanation's effectiveness.
Abstract:Existing protocols for multilateral negotiation require a full consensus among the negotiating parties. In contrast, we propose a protocol for multilateral negotiation that allows partial consensus, wherein only a subset of the negotiating parties can reach an agreement. We motivate problems that require such a protocol and describe the protocol formally.