Abstract:Multi-objective reinforcement learning (MORL) is used to solve problems involving multiple objectives. An MORL agent must make decisions based on the diverse signals provided by distinct reward functions. Training an MORL agent yields a set of solutions (policies), each presenting distinct trade-offs among the objectives (expected returns). MORL enhances explainability by enabling fine-grained comparisons of policies in the solution set based on their trade-offs as opposed to having a single policy. However, the solution set is typically large and multi-dimensional, where each policy (e.g., a neural network) is represented by its objective values. We propose an approach for clustering the solution set generated by MORL. By considering both policy behavior and objective values, our clustering method can reveal the relationship between policy behaviors and regions in the objective space. This approach can enable decision makers (DMs) to identify overarching trends and insights in the solution set rather than examining each policy individually. We tested our method in four multi-objective environments and found it outperformed traditional k-medoids clustering. Additionally, we include a case study that demonstrates its real-world application.
Abstract:To accurately capture the variability in human judgments for subjective NLP tasks, incorporating a wide range of perspectives in the annotation process is crucial. Active Learning (AL) addresses the high costs of collecting human annotations by strategically annotating the most informative samples. We introduce Annotator-Centric Active Learning (ACAL), which incorporates an annotator selection strategy following data sampling. Our objective is two-fold: (1) to efficiently approximate the full diversity of human judgments, and to assess model performance using annotator-centric metrics, which emphasize minority perspectives over a majority. We experiment with multiple annotator selection strategies across seven subjective NLP tasks, employing both traditional and novel, human-centered evaluation metrics. Our findings indicate that ACAL improves data efficiency and excels in annotator-centric performance evaluations. However, its success depends on the availability of a sufficiently large and diverse pool of annotators to sample from.
Abstract:Large-scale survey tools enable the collection of citizen feedback in opinion corpora. Extracting the key arguments from a large and noisy set of opinions helps in understanding the opinions quickly and accurately. Fully automated methods can extract arguments but (1) require large labeled datasets that induce large annotation costs and (2) work well for known viewpoints, but not for novel points of view. We propose HyEnA, a hybrid (human + AI) method for extracting arguments from opinionated texts, combining the speed of automated processing with the understanding and reasoning capabilities of humans. We evaluate HyEnA on three citizen feedback corpora. We find that, on the one hand, HyEnA achieves higher coverage and precision than a state-of-the-art automated method when compared to a common set of diverse opinions, justifying the need for human insight. On the other hand, HyEnA requires less human effort and does not compromise quality compared to (fully manual) expert analysis, demonstrating the benefit of combining human and artificial intelligence.
Abstract:Understanding citizens' values in participatory systems is crucial for citizen-centric policy-making. We envision a hybrid participatory system where participants make choices and provide motivations for those choices, and AI agents estimate their value preferences by interacting with them. We focus on situations where a conflict is detected between participants' choices and motivations, and propose methods for estimating value preferences while addressing detected inconsistencies by interacting with the participants. We operationalize the philosophical stance that "valuing is deliberatively consequential." That is, if a participant's choice is based on a deliberation of value preferences, the value preferences can be observed in the motivation the participant provides for the choice. Thus, we propose and compare value estimation methods that prioritize the values estimated from motivations over the values estimated from choices alone. Then, we introduce a disambiguation strategy that addresses the detected inconsistencies between choices and motivations by directly interacting with the participants. We evaluate the proposed methods on a dataset of a large-scale survey on energy transition. The results show that explicitly addressing inconsistencies between choices and motivations improves the estimation of an individual's value preferences. The disambiguation strategy does not show substantial improvements when compared to similar baselines--however, we discuss how the novelty of the approach can open new research avenues and propose improvements to address the current limitations.
Abstract:Presenting high-level arguments is a crucial task for fostering participation in online societal discussions. Current argument summarization approaches miss an important facet of this task -- capturing diversity -- which is important for accommodating multiple perspectives. We introduce three aspects of diversity: those of opinions, annotators, and sources. We evaluate approaches to a popular argument summarization task called Key Point Analysis, which shows how these approaches struggle to (1) represent arguments shared by few people, (2) deal with data from various sources, and (3) align with subjectivity in human-provided annotations. We find that both general-purpose LLMs and dedicated KPA models exhibit this behavior, but have complementary strengths. Further, we observe that diversification of training data may ameliorate generalization. Addressing diversity in argument summarization requires a mix of strategies to deal with subjectivity.
Abstract:Recent advances in NLP show that language models retain a discernible level of knowledge in deontological ethics and moral norms. However, existing works often treat morality as binary, ranging from right to wrong. This simplistic view does not capture the nuances of moral judgment. Pluralist moral philosophers argue that human morality can be deconstructed into a finite number of elements, respecting individual differences in moral judgment. In line with this view, we build a pluralist moral sentence embedding space via a state-of-the-art contrastive learning approach. We systematically investigate the embedding space by studying the emergence of relationships among moral elements, both quantitatively and qualitatively. Our results show that a pluralist approach to morality can be captured in an embedding space. However, moral pluralism is challenging to deduce via self-supervision alone and requires a supervised approach with human labels.
Abstract:We present a review that unifies decision-support methods for exploring the solutions produced by multi-objective optimization (MOO) algorithms. As MOO is applied to solve diverse problems, approaches for analyzing the trade-offs offered by MOO algorithms are scattered across fields. We provide an overview of the advances on this topic, including methods for visualization, mining the solution set, and uncertainty exploration as well as emerging research directions, including interactivity, explainability, and ethics. We synthesize these methods drawing from different fields of research to build a unified approach, independent of the application. Our goals are to reduce the entry barrier for researchers and practitioners on using MOO algorithms and to provide novel research directions.
Abstract:Disagreements are common in online discussions. Disagreement may foster collaboration and improve the quality of a discussion under some conditions. Although there exist methods for recognizing disagreement, a deeper understanding of factors that influence disagreement is lacking in the literature. We investigate a hypothesis that differences in personal values are indicative of disagreement in online discussions. We show how state-of-the-art models can be used for estimating values in online discussions and how the estimated values can be aggregated into value profiles. We evaluate the estimated value profiles based on human-annotated agreement labels. We find that the dissimilarity of value profiles correlates with disagreement in specific cases. We also find that including value information in agreement prediction improves performance.
Abstract:With the growing capabilities and pervasiveness of AI systems, societies must collectively choose between reduced human autonomy, endangered democracies and limited human rights, and AI that is aligned to human and social values, nurturing collaboration, resilience, knowledge and ethical behaviour. In this chapter, we introduce the notion of self-reflective AI systems for meaningful human control over AI systems. Focusing on decision support systems, we propose a framework that integrates knowledge from psychology and philosophy with formal reasoning methods and machine learning approaches to create AI systems responsive to human values and social norms. We also propose a possible research approach to design and develop self-reflective capability in AI systems. Finally, we argue that self-reflective AI systems can lead to self-reflective hybrid systems (human + AI), thus increasing meaningful human control and empowering human moral reasoning by providing comprehensible information and insights on possible human moral blind spots.
Abstract:Existing protocols for multilateral negotiation require a full consensus among the negotiating parties. In contrast, we propose a protocol for multilateral negotiation that allows partial consensus, wherein only a subset of the negotiating parties can reach an agreement. We motivate problems that require such a protocol and describe the protocol formally.