Abstract:Multi-objective reinforcement learning (MORL) is used to solve problems involving multiple objectives. An MORL agent must make decisions based on the diverse signals provided by distinct reward functions. Training an MORL agent yields a set of solutions (policies), each presenting distinct trade-offs among the objectives (expected returns). MORL enhances explainability by enabling fine-grained comparisons of policies in the solution set based on their trade-offs as opposed to having a single policy. However, the solution set is typically large and multi-dimensional, where each policy (e.g., a neural network) is represented by its objective values. We propose an approach for clustering the solution set generated by MORL. By considering both policy behavior and objective values, our clustering method can reveal the relationship between policy behaviors and regions in the objective space. This approach can enable decision makers (DMs) to identify overarching trends and insights in the solution set rather than examining each policy individually. We tested our method in four multi-objective environments and found it outperformed traditional k-medoids clustering. Additionally, we include a case study that demonstrates its real-world application.
Abstract:We present a review that unifies decision-support methods for exploring the solutions produced by multi-objective optimization (MOO) algorithms. As MOO is applied to solve diverse problems, approaches for analyzing the trade-offs offered by MOO algorithms are scattered across fields. We provide an overview of the advances on this topic, including methods for visualization, mining the solution set, and uncertainty exploration as well as emerging research directions, including interactivity, explainability, and ethics. We synthesize these methods drawing from different fields of research to build a unified approach, independent of the application. Our goals are to reduce the entry barrier for researchers and practitioners on using MOO algorithms and to provide novel research directions.