Abstract:Rerunning a metric-based evaluation should be more straightforward, and results should be closer, than in a human-based evaluation, especially where code and model checkpoints are made available by the original authors. As this report of our efforts to rerun a metric-based evaluation of a set of single-attribute and multiple-attribute controllable text generation (CTG) techniques shows however, such reruns of evaluations do not always produce results that are the same as the original results, and can reveal errors in the reporting of the original work.
Abstract:The performance of NLP methods for severely under-resourced languages cannot currently hope to match the state of the art in NLP methods for well resourced languages. We explore the extent to which pretrained large language models (LLMs) can bridge this gap, via the example of data-to-text generation for Irish, Welsh, Breton and Maltese. We test LLMs on these under-resourced languages and English, in a range of scenarios. We find that LLMs easily set the state of the art for the under-resourced languages by substantial margins, as measured by both automatic and human evaluations. For all our languages, human evaluation shows on-a-par performance with humans for our best systems, but BLEU scores collapse compared to English, casting doubt on the metric's suitability for evaluating non-task-specific systems. Overall, our results demonstrate the great potential of LLMs to bridge the performance gap for under-resourced languages.
Abstract:LLMs like GPT are great at tasks involving English which dominates in their training data. In this paper, we look at how they cope with tasks involving languages that are severely under-represented in their training data, in the context of data-to-text generation for Irish, Maltese, Welsh and Breton. During the prompt-engineering phase we tested a range of prompt types and formats on GPT-3.5 and~4 with a small sample of example input/output pairs. We then fully evaluated the two most promising prompts in two scenarios: (i) direct generation into the under-resourced language, and (ii) generation into English followed by translation into the under-resourced language. We find that few-shot prompting works better for direct generation into under-resourced languages, but that the difference disappears when pivoting via English. The few-shot + translation system variants were submitted to the WebNLG 2023 shared task where they outperformed competitor systems by substantial margins in all languages on all metrics. We conclude that good performance on under-resourced languages can be achieved out-of-the box with state-of-the-art LLMs. However, our best results (for Welsh) remain well below the lowest ranked English system at WebNLG'20.
Abstract:Routing plays a fundamental role in network applications, but it is especially challenging in Delay Tolerant Networks (DTNs). These are a kind of mobile ad hoc networks made of e.g. (possibly, unmanned) vehicles and humans where, despite a lack of continuous connectivity, data must be transmitted while the network conditions change due to the nodes' mobility. In these contexts, routing is NP-hard and is usually solved by heuristic "store and forward" replication-based approaches, where multiple copies of the same message are moved and stored across nodes in the hope that at least one will reach its destination. Still, the existing routing protocols produce relatively low delivery probabilities. Here, we genetically improve two routing protocols widely adopted in DTNs, namely Epidemic and PRoPHET, in the attempt to optimize their delivery probability. First, we dissect them into their fundamental components, i.e., functionalities such as checking if a node can transfer data, or sending messages to all connections. Then, we apply Genetic Improvement (GI) to manipulate these components as terminal nodes of evolving trees. We apply this methodology, in silico, to six test cases of urban networks made of hundreds of nodes, and find that GI produces consistent gains in delivery probability in four cases. We then verify if this improvement entails a worsening of other relevant network metrics, such as latency and buffer time. Finally, we compare the logics of the best evolved protocols with those of the baseline protocols, and we discuss the generalizability of the results across test cases.