Abstract:Image denoising is one of the most critical problems in mobile photo processing. While many solutions have been proposed for this task, they are usually working with synthetic data and are too computationally expensive to run on mobile devices. To address this problem, we introduce the first Mobile AI challenge, where the target is to develop an end-to-end deep learning-based image denoising solution that can demonstrate high efficiency on smartphone GPUs. For this, the participants were provided with a novel large-scale dataset consisting of noisy-clean image pairs captured in the wild. The runtime of all models was evaluated on the Samsung Exynos 2100 chipset with a powerful Mali GPU capable of accelerating floating-point and quantized neural networks. The proposed solutions are fully compatible with any mobile GPU and are capable of processing 480p resolution images under 40-80 ms while achieving high fidelity results. A detailed description of all models developed in the challenge is provided in this paper.
Abstract:Differential Architecture Search (DARTS) is now a widely disseminated weight-sharing neural architecture search method. However, there are two fundamental weaknesses remain untackled. First, we observe that the well-known aggregation of skip connections during optimization is caused by an unfair advantage in an exclusive competition. Second, there is a non-negligible incongruence when discretizing continuous architectural weights to a one-hot representation. Because of these two reasons, DARTS delivers a biased solution that might not even be suboptimal. In this paper, we present a novel approach to curing both frailties. Specifically, as unfair advantages in a pure exclusive competition easily induce a monopoly, we relax the choice of operations to be collaborative, where we let each operation have an equal opportunity to develop its strength. We thus call our method Fair DARTS. Moreover, we propose a zero-one loss to directly reduce the discretization gap. Experiments are performed on two mainstream search spaces, in which we achieve new state-of-the-art networks on ImageNet. Our code is available on https://github.com/xiaomi-automl/fairdarts.