Abstract:Mathematical reasoning presents a significant challenge to the cognitive capabilities of LLMs. Various methods have been proposed to enhance the mathematical ability of LLMs. However, few recognize the value of state transition for LLM reasoning. In this work, we define mathematical problem-solving as a process of transiting from an initial unsolved state to the final resolved state, and propose Kwai-STaR framework, which transforms LLMs into State-Transition Reasoners to improve their intuitive reasoning capabilities. Our approach comprises three main steps: (1) Define the state space tailored to the mathematical reasoning. (2) Generate state-transition data based on the state space. (3) Convert original LLMs into State-Transition Reasoners via a curricular training strategy. Our experiments validate the effectiveness of Kwai-STaR in enhancing mathematical reasoning: After training on the small-scale Kwai-STaR dataset, general LLMs, including Mistral-7B and LLaMA-3, achieve considerable performance gain on the GSM8K and GSM-Hard dataset. Additionally, the state transition-based design endows Kwai-STaR with remarkable training and inference efficiency. Further experiments are underway to establish the generality of Kwai-STaR.
Abstract:With the prosperity of large language models (LLMs), powerful LLM-based intelligent agents have been developed to provide customized services with a set of user-defined tools. State-of-the-art methods for constructing LLM agents adopt trained LLMs and further fine-tune them on data for the agent task. However, we show that such methods are vulnerable to our proposed backdoor attacks named BadAgent on various agent tasks, where a backdoor can be embedded by fine-tuning on the backdoor data. At test time, the attacker can manipulate the deployed LLM agents to execute harmful operations by showing the trigger in the agent input or environment. To our surprise, our proposed attack methods are extremely robust even after fine-tuning on trustworthy data. Though backdoor attacks have been studied extensively in natural language processing, to the best of our knowledge, we could be the first to study them on LLM agents that are more dangerous due to the permission to use external tools. Our work demonstrates the clear risk of constructing LLM agents based on untrusted LLMs or data. Our code is public at https://github.com/DPamK/BadAgent
Abstract:Researchers have recently found that Self-Supervised Learning (SSL) is vulnerable to backdoor attacks. The attacker can embed hidden SSL backdoors via a few poisoned examples in the training dataset and maliciously manipulate the behavior of downstream models. To defend against SSL backdoor attacks, a feasible route is to detect and remove the poisonous samples in the training set. However, the existing SSL backdoor defense method fails to detect the poisonous samples precisely. In this paper, we propose to erase the SSL backdoor by cluster activation masking and propose a novel PoisonCAM method. After obtaining the threat model trained on the poisoned dataset, our method can precisely detect poisonous samples based on the assumption that masking the backdoor trigger can effectively change the activation of a downstream clustering model. In experiments, our PoisonCAM achieves 96% accuracy for backdoor trigger detection compared to 3% of the state-of-the-art method on poisoned ImageNet-100. Moreover, our proposed PoisonCAM significantly improves the performance of the trained SSL model under backdoor attacks compared to the state-of-the-art method. Our code will be available at https://github.com/LivXue/PoisonCAM.
Abstract:In recent years, cross-modal reasoning (CMR), the process of understanding and reasoning across different modalities, has emerged as a pivotal area with applications spanning from multimedia analysis to healthcare diagnostics. As the deployment of AI systems becomes more ubiquitous, the demand for transparency and comprehensibility in these systems' decision-making processes has intensified. This survey delves into the realm of interpretable cross-modal reasoning (I-CMR), where the objective is not only to achieve high predictive performance but also to provide human-understandable explanations for the results. This survey presents a comprehensive overview of the typical methods with a three-level taxonomy for I-CMR. Furthermore, this survey reviews the existing CMR datasets with annotations for explanations. Finally, this survey summarizes the challenges for I-CMR and discusses potential future directions. In conclusion, this survey aims to catalyze the progress of this emerging research area by providing researchers with a panoramic and comprehensive perspective, illuminating the state of the art and discerning the opportunities. The summarized methods, datasets, and other resources are available at https://github.com/ZuyiZhou/Awesome-Interpretable-Cross-modal-Reasoning.
Abstract:Collaborative filtering (CF) is widely used by personalized recommendation systems, which aims to predict the preference of users with historical user-item interactions. In recent years, Graph Neural Networks (GNNs) have been utilized to build CF models and have shown promising performance. Recent state-of-the-art GNN-based CF approaches simply attribute their performance improvement to the high-order neighbor aggregation ability of GNNs. However, we observe that some powerful deep GNNs such as JKNet and DropEdge, can effectively exploit high-order neighbor information on other graph tasks but perform poorly on CF tasks, which conflicts with the explanation of these GNN-based CF research. Different from these research, we investigate the GNN-based CF from the perspective of Markov processes for distance learning with a unified framework named Markov Graph Diffusion Collaborative Filtering (MGDCF). We design a Markov Graph Diffusion Network (MGDN) as MGDCF's GNN encoder, which learns vertex representations by trading off two types of distances via a Markov process. We show the theoretical equivalence between MGDN's output and the optimal solution of a distance loss function, which can boost the optimization of CF models. MGDN can generalize state-of-the-art models such as LightGCN and APPNP, which are heterogeneous GNNs. In addition, MGDN can be extended to homogeneous GNNs with our sparsification technique. For optimizing MGDCF, we propose the InfoBPR loss function, which extends the widely used BPR loss to exploit multiple negative samples for better performance. We conduct experiments to perform detailed analysis on MGDCF. The source code is publicly available at https://github.com/hujunxianligong/MGDCF.
Abstract:In this paper, we present GRecX, an open-source TensorFlow framework for benchmarking GNN-based recommendation models in an efficient and unified way. GRecX consists of core libraries for building GNN-based recommendation benchmarks, as well as the implementations of popular GNN-based recommendation models. The core libraries provide essential components for building efficient and unified benchmarks, including FastMetrics (efficient metrics computation libraries), VectorSearch (efficient similarity search libraries for dense vectors), BatchEval (efficient mini-batch evaluation libraries), and DataManager (unified dataset management libraries). Especially, to provide a unified benchmark for the fair comparison of different complex GNN-based recommendation models, we design a new metric GRMF-X and integrate it into the FastMetrics component. Based on a TensorFlow GNN library tf_geometric, GRecX carefully implements a variety of popular GNN-based recommendation models. We carefully implement these baseline models to reproduce the performance reported in the literature, and our implementations are usually more efficient and friendly. In conclusion, GRecX enables uses to train and benchmark GNN-based recommendation baselines in an efficient and unified way. We conduct experiments with GRecX, and the experimental results show that GRecX allows us to train and benchmark GNN-based recommendation baselines in an efficient and unified way. The source code of GRecX is available at https://github.com/maenzhier/GRecX.
Abstract:Graph Neural Networks (GNNs) have achieved great success in processing graph data by extracting and propagating structure-aware features. Existing GNN research designs various propagation schemes to guide the aggregation of neighbor information. Recently the field has advanced from local propagation schemes that focus on local neighbors towards extended propagation schemes that can directly deal with extended neighbors consisting of both local and high-order neighbors. Despite the impressive performance, existing approaches are still insufficient to build an efficient and learnable extended propagation scheme that can adaptively adjust the influence of local and high-order neighbors. This paper proposes an efficient yet effective end-to-end framework, namely Contrastive Adaptive Propagation Graph Neural Networks (CAPGNN), to address these issues by combining Personalized PageRank and attention techniques. CAPGNN models the learnable extended propagation scheme with a polynomial of a sparse local affinity matrix, where the polynomial relies on Personalized PageRank to provide superior initial coefficients. In order to adaptively adjust the influence of both local and high-order neighbors, a coefficient-attention model is introduced to learn to adjust the coefficients of the polynomial. In addition, we leverage self-supervised learning techniques and design a negative-free entropy-aware contrastive loss to explicitly take advantage of unlabeled data for training. We implement CAPGNN as two different versions named CAPGCN and CAPGAT, which use static and dynamic sparse local affinity matrices, respectively. Experiments on graph benchmark datasets suggest that CAPGNN can consistently outperform or match state-of-the-art baselines. The source code is publicly available at https://github.com/hujunxianligong/CAPGNN.
Abstract:Video-Text Retrieval has been a hot research topic with the explosion of multimedia data on the Internet. Transformer for video-text learning has attracted increasing attention due to the promising performance.However, existing cross-modal transformer approaches typically suffer from two major limitations: 1) Limited exploitation of the transformer architecture where different layers have different feature characteristics. 2) End-to-end training mechanism limits negative interactions among samples in a mini-batch. In this paper, we propose a novel approach named Hierarchical Transformer (HiT) for video-text retrieval. HiT performs hierarchical cross-modal contrastive matching in feature-level and semantic-level to achieve multi-view and comprehensive retrieval results. Moreover, inspired by MoCo, we propose Momentum Cross-modal Contrast for cross-modal learning to enable large-scale negative interactions on-the-fly, which contributes to the generation of more precise and discriminative representations. Experimental results on three major Video-Text Retrieval benchmark datasets demonstrate the advantages of our methods.
Abstract:We introduce tf_geometric, an efficient and friendly library for graph deep learning, which is compatible with both TensorFlow 1.x and 2.x. tf_geometric provides kernel libraries for building Graph Neural Networks (GNNs) as well as implementations of popular GNNs. The kernel libraries consist of infrastructures for building efficient GNNs, including graph data structures, graph map-reduce framework, graph mini-batch strategy, etc. These infrastructures enable tf_geometric to support single-graph computation, multi-graph computation, graph mini-batch, distributed training, etc.; therefore, tf_geometric can be used for a variety of graph deep learning tasks, such as transductive node classification, inductive node classification, link prediction, and graph classification. Based on the kernel libraries, tf_geometric implements a variety of popular GNN models for different tasks. To facilitate the implementation of GNNs, tf_geometric also provides some other libraries for dataset management, graph sampling, etc. Different from existing popular GNN libraries, tf_geometric provides not only Object-Oriented Programming (OOP) APIs, but also Functional APIs, which enable tf_geometric to handle advanced graph deep learning tasks such as graph meta-learning. The APIs of tf_geometric are friendly, and they are suitable for both beginners and experts. In this paper, we first present an overview of tf_geometric's framework. Then, we conduct experiments on some benchmark datasets and report the performance of several popular GNN models implemented by tf_geometric.
Abstract:Network embedding represents nodes in a continuous vector space and preserves structure information from the Network. Existing methods usually adopt a "one-size-fits-all" approach when concerning multi-scale structure information, such as first- and second-order proximity of nodes, ignoring the fact that different scales play different roles in the embedding learning. In this paper, we propose an Attention-based Adversarial Autoencoder Network Embedding(AAANE) framework, which promotes the collaboration of different scales and lets them vote for robust representations. The proposed AAANE consists of two components: 1) Attention-based autoencoder effectively capture the highly non-linear network structure, which can de-emphasize irrelevant scales during training. 2) An adversarial regularization guides the autoencoder learn robust representations by matching the posterior distribution of the latent embeddings to given prior distribution. This is the first attempt to introduce attention mechanisms to multi-scale network embedding. Experimental results on real-world networks show that our learned attention parameters are different for every network and the proposed approach outperforms existing state-of-the-art approaches for network embedding.