Abstract:With the prosperity of large language models (LLMs), powerful LLM-based intelligent agents have been developed to provide customized services with a set of user-defined tools. State-of-the-art methods for constructing LLM agents adopt trained LLMs and further fine-tune them on data for the agent task. However, we show that such methods are vulnerable to our proposed backdoor attacks named BadAgent on various agent tasks, where a backdoor can be embedded by fine-tuning on the backdoor data. At test time, the attacker can manipulate the deployed LLM agents to execute harmful operations by showing the trigger in the agent input or environment. To our surprise, our proposed attack methods are extremely robust even after fine-tuning on trustworthy data. Though backdoor attacks have been studied extensively in natural language processing, to the best of our knowledge, we could be the first to study them on LLM agents that are more dangerous due to the permission to use external tools. Our work demonstrates the clear risk of constructing LLM agents based on untrusted LLMs or data. Our code is public at https://github.com/DPamK/BadAgent
Abstract:Researchers have recently found that Self-Supervised Learning (SSL) is vulnerable to backdoor attacks. The attacker can embed hidden SSL backdoors via a few poisoned examples in the training dataset and maliciously manipulate the behavior of downstream models. To defend against SSL backdoor attacks, a feasible route is to detect and remove the poisonous samples in the training set. However, the existing SSL backdoor defense method fails to detect the poisonous samples precisely. In this paper, we propose to erase the SSL backdoor by cluster activation masking and propose a novel PoisonCAM method. After obtaining the threat model trained on the poisoned dataset, our method can precisely detect poisonous samples based on the assumption that masking the backdoor trigger can effectively change the activation of a downstream clustering model. In experiments, our PoisonCAM achieves 96% accuracy for backdoor trigger detection compared to 3% of the state-of-the-art method on poisoned ImageNet-100. Moreover, our proposed PoisonCAM significantly improves the performance of the trained SSL model under backdoor attacks compared to the state-of-the-art method. Our code will be available at https://github.com/LivXue/PoisonCAM.
Abstract:Synthesizing medical images while preserving their structural information is crucial in medical research. In such scenarios, the preservation of anatomical content becomes especially important. Although recent advances have been made by incorporating instance-level information to guide translation, these methods overlook the spatial coherence of structural-level representation and the anatomical invariance of content during translation. To address these issues, we introduce hierarchical granularity discrimination, which exploits various levels of semantic information present in medical images. Our strategy utilizes three levels of discrimination granularity: pixel-level discrimination using a Brain Memory Bank, structure-level discrimination on each brain structure with a re-weighting strategy to focus on hard samples, and global-level discrimination to ensure anatomical consistency during translation. The image translation performance of our strategy has been evaluated on three independent datasets (UK Biobank, IXI, and BraTS 2018), and it has outperformed state-of-the-art algorithms. Particularly, our model excels not only in synthesizing normal structures but also in handling abnormal (pathological) structures, such as brain tumors, despite the variations in contrast observed across different imaging modalities due to their pathological characteristics. The diagnostic value of synthesized MR images containing brain tumors has been evaluated by radiologists. This indicates that our model may offer an alternative solution in scenarios where specific MR modalities of patients are unavailable. Extensive experiments further demonstrate the versatility of our method, providing unique insights into medical image translation.
Abstract:Biomedical named entity recognition (NER) is a critial task that aims to identify structured information in clinical text, which is often replete with complex, technical terms and a high degree of variability. Accurate and reliable NER can facilitate the extraction and analysis of important biomedical information, which can be used to improve downstream applications including the healthcare system. However, NER in the biomedical domain is challenging due to limited data availability, as the high expertise, time, and expenses are required to annotate its data. In this paper, by using the limited data, we explore various extrinsic factors including the corpus annotation scheme, data augmentation techniques, semi-supervised learning and Brill transformation, to improve the performance of a NER model on a clinical text dataset (i2b2 2012, \citet{sun-rumshisky-uzuner:2013}). Our experiments demonstrate that these approaches can significantly improve the model's F1 score from original 73.74 to 77.55. Our findings suggest that considering different extrinsic factors and combining these techniques is a promising approach for improving NER performance in the biomedical domain where the size of data is limited.
Abstract:Segmenting the fine structure of the mouse brain on magnetic resonance (MR) images is critical for delineating morphological regions, analyzing brain function, and understanding their relationships. Compared to a single MRI modality, multimodal MRI data provide complementary tissue features that can be exploited by deep learning models, resulting in better segmentation results. However, multimodal mouse brain MRI data is often lacking, making automatic segmentation of mouse brain fine structure a very challenging task. To address this issue, it is necessary to fuse multimodal MRI data to produce distinguished contrasts in different brain structures. Hence, we propose a novel disentangled and contrastive GAN-based framework, named MouseGAN++, to synthesize multiple MR modalities from single ones in a structure-preserving manner, thus improving the segmentation performance by imputing missing modalities and multi-modality fusion. Our results demonstrate that the translation performance of our method outperforms the state-of-the-art methods. Using the subsequently learned modality-invariant information as well as the modality-translated images, MouseGAN++ can segment fine brain structures with averaged dice coefficients of 90.0% (T2w) and 87.9% (T1w), respectively, achieving around +10% performance improvement compared to the state-of-the-art algorithms. Our results demonstrate that MouseGAN++, as a simultaneous image synthesis and segmentation method, can be used to fuse cross-modality information in an unpaired manner and yield more robust performance in the absence of multimodal data. We release our method as a mouse brain structural segmentation tool for free academic usage at https://github.com/yu02019.
Abstract:Small lesions in magnetic resonance imaging (MRI) images are crucial for clinical diagnosis of many kinds of diseases. However, the MRI quality can be easily degraded by various noise, which can greatly affect the accuracy of diagnosis of small lesion. Although some methods for denoising MR images have been proposed, task-specific denoising methods for improving the diagnosis confidence of small lesions are lacking. In this work, we propose a voxel-wise hybrid residual MLP-CNN model to denoise three-dimensional (3D) MR images with small lesions. We combine basic deep learning architecture, MLP and CNN, to obtain an appropriate inherent bias for the image denoising and integrate each output layers in MLP and CNN by adding residual connections to leverage long-range information. We evaluate the proposed method on 720 T2-FLAIR brain images with small lesions at different noise levels. The results show the superiority of our method in both quantitative and visual evaluations on testing dataset compared to state-of-the-art methods. Moreover, two experienced radiologists agreed that at moderate and high noise levels, our method outperforms other methods in terms of recovery of small lesions and overall image denoising quality. The implementation of our method is available at https://github.com/laowangbobo/Residual_MLP_CNN_Mixer.