Abstract:This paper explores the application of large language models (LLMs) in nursing and elderly care, focusing on AI-driven patient monitoring and interaction. We introduce a novel Chinese nursing dataset and implement incremental pre-training (IPT) and supervised fine-tuning (SFT) techniques to enhance LLM performance in specialized tasks. Using LangChain, we develop a dynamic nursing assistant capable of real-time care and personalized interventions. Experimental results demonstrate significant improvements, paving the way for AI-driven solutions to meet the growing demands of healthcare in aging populations.
Abstract:Analog computing using non-volatile memristors has emerged as a promising solution for energy-efficient deep learning. New materials, like perovskites-based memristors are recently attractive due to their cost-effectiveness, energy efficiency and flexibility. Yet, challenges in material diversity and immature fabrications require extensive experimentation for device development. Moreover, significant non-idealities in these memristors often impede them for computing. Here, we propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs that effectively address the inherent non-idealities of these memristors. Employing Bayesian optimization (BO) with a focus on usability, we efficiently identify optimal materials and fabrication conditions for perovskite memristors. Meanwhile, we developed "BayesMulti", a DNN training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections. Our approach theoretically ensures that within a certain range of parameter perturbations due to memristor non-idealities, the prediction outcomes remain consistent. Our integrated approach enables use of analog computing in much deeper and wider networks, which significantly outperforms existing methods in diverse tasks like image classification, autonomous driving, species identification, and large vision-language models, achieving up to 100-fold improvements. We further validate our methodology on a 10$\times$10 optimized perovskite memristor crossbar, demonstrating high accuracy in a classification task and low energy consumption. This study offers a versatile solution for efficient optimization of various analog computing systems, encompassing both devices and algorithms.
Abstract:Aspect Sentiment Triplet Extraction (ASTE) aims to co-extract the sentiment triplets in a given corpus. Existing approaches within the pretraining-finetuning paradigm tend to either meticulously craft complex tagging schemes and classification heads, or incorporate external semantic augmentation to enhance performance. In this study, we, for the first time, re-evaluate the redundancy in tagging schemes and the internal enhancement in pretrained representations. We propose a method to improve and utilize pretrained representations by integrating a minimalist tagging scheme and a novel token-level contrastive learning strategy. The proposed approach demonstrates comparable or superior performance compared to state-of-the-art techniques while featuring a more compact design and reduced computational overhead. Additionally, we are the first to formally evaluate GPT-4's performance in few-shot learning and Chain-of-Thought scenarios for this task. The results demonstrate that the pretraining-finetuning paradigm remains highly effective even in the era of large language models.
Abstract:Recent vision-language pre-trained models (VL-PTMs) have shown remarkable success in open-vocabulary tasks. However, downstream use cases often involve further fine-tuning of VL-PTMs, which may distort their general knowledge and impair their ability to handle distribution shifts. In real-world scenarios, machine learning systems inevitably encounter both covariate shifts (e.g., changes in image styles) and semantic shifts (e.g., test-time unseen classes). This highlights the importance of enhancing out-of-distribution (OOD) generalization on covariate shifts and simultaneously detecting semantic-shifted unseen classes. Thus a critical but underexplored question arises: How to improve VL-PTMs' generalization ability to closed-set OOD data, while effectively detecting open-set unseen classes during fine-tuning? In this paper, we propose a novel objective function of OOD detection that also serves to improve OOD generalization. We show that minimizing the gradient magnitude of energy scores on training data leads to domain-consistent Hessians of classification loss, a strong indicator for OOD generalization revealed by theoretical analysis. Based on this finding, we have developed a unified fine-tuning framework that allows for concurrent optimization of both tasks. Extensive experiments have demonstrated the superiority of our method. The code is available at https://github.com/LinLLLL/CRoFT.
Abstract:Aspect Sentiment Triplet Extraction (ASTE) is a burgeoning subtask of fine-grained sentiment analysis, aiming to extract structured sentiment triplets from unstructured textual data. Existing approaches to ASTE often complicate the task with additional structures or external data. In this research, we propose a novel tagging scheme and employ a contrastive learning approach to mitigate these challenges. The proposed approach demonstrates comparable or superior performance in comparison to state-of-the-art techniques, while featuring a more compact design and reduced computational overhead. Notably, even in the era of Large Language Models (LLMs), our method exhibits superior efficacy compared to GPT 3.5 and GPT 4 in a few-shot learning scenarios. This study also provides valuable insights for the advancement of ASTE techniques within the paradigm of large language models.
Abstract:Out-of-distribution (OOD) generalization has long been a challenging problem that remains largely unsolved. Gaussian processes (GP), as popular probabilistic model classes, especially in the small data regime, presume strong OOD generalization abilities. Surprisingly, their OOD generalization abilities have been under-explored before compared with other lines of GP research. In this paper, we identify that GP is not free from the problem and propose a domain invariant learning algorithm for Gaussian processes (DIL-GP) with a min-max optimization on the likelihood. DIL-GP discovers the heterogeneity in the data and forces invariance across partitioned subsets of data. We further extend the DIL-GP to improve Bayesian optimization's adaptability on changing environments. Numerical experiments demonstrate the superiority of DIL-GP for predictions on several synthetic and real-world datasets. We further demonstrate the effectiveness of the DIL-GP Bayesian optimization method on a PID parameters tuning experiment for a quadrotor. The full version and source code are available at: https://github.com/Billzxl/DIL-GP.