Abstract:Aspect Sentiment Triplet Extraction (ASTE) aims to co-extract the sentiment triplets in a given corpus. Existing approaches within the pretraining-finetuning paradigm tend to either meticulously craft complex tagging schemes and classification heads, or incorporate external semantic augmentation to enhance performance. In this study, we, for the first time, re-evaluate the redundancy in tagging schemes and the internal enhancement in pretrained representations. We propose a method to improve and utilize pretrained representations by integrating a minimalist tagging scheme and a novel token-level contrastive learning strategy. The proposed approach demonstrates comparable or superior performance compared to state-of-the-art techniques while featuring a more compact design and reduced computational overhead. Additionally, we are the first to formally evaluate GPT-4's performance in few-shot learning and Chain-of-Thought scenarios for this task. The results demonstrate that the pretraining-finetuning paradigm remains highly effective even in the era of large language models.
Abstract:Aspect Sentiment Triplet Extraction (ASTE) is a burgeoning subtask of fine-grained sentiment analysis, aiming to extract structured sentiment triplets from unstructured textual data. Existing approaches to ASTE often complicate the task with additional structures or external data. In this research, we propose a novel tagging scheme and employ a contrastive learning approach to mitigate these challenges. The proposed approach demonstrates comparable or superior performance in comparison to state-of-the-art techniques, while featuring a more compact design and reduced computational overhead. Notably, even in the era of Large Language Models (LLMs), our method exhibits superior efficacy compared to GPT 3.5 and GPT 4 in a few-shot learning scenarios. This study also provides valuable insights for the advancement of ASTE techniques within the paradigm of large language models.