Abstract:Self-Supervised Learning (SSL) Automatic Speech Recognition (ASR) models have shown great promise over Supervised Learning (SL) ones in low-resource settings. However, the advantages of SSL are gradually weakened when the amount of labeled data increases in many industrial applications. To further improve the ASR performance when abundant labels are available, we first explore the potential of combining SL and SSL ASR models via analyzing their complementarity in recognition accuracy and optimization property. Then, we propose a novel Optimal Transport based Fusion (OTF) method for SL and SSL models without incurring extra computation cost in inference. Specifically, optimal transport is adopted to softly align the layer-wise weights to unify the two different networks into a single one. Experimental results on the public 1k-hour English LibriSpeech dataset and our in-house 2.6k-hour Chinese dataset show that OTF largely outperforms the individual models with lower error rates.
Abstract:In this paper, we propose a Unified pre-training Framework for Online and Offline (UFO2) Automatic Speech Recognition (ASR), which 1) simplifies the two separate training workflows for online and offline modes into one process, and 2) improves the Word Error Rate (WER) performance with limited utterance annotating. Specifically, we extend the conventional offline-mode Self-Supervised Learning (SSL)-based ASR approach to a unified manner, where the model training is conditioned on both the full-context and dynamic-chunked inputs. To enhance the pre-trained representation model, stop-gradient operation is applied to decouple the online-mode objectives to the quantizer. Moreover, in both the pre-training and the downstream fine-tuning stages, joint losses are proposed to train the unified model with full-weight sharing for the two modes. Experimental results on the LibriSpeech dataset show that UFO2 outperforms the SSL-based baseline method by 29.7% and 18.2% relative WER reduction in offline and online modes, respectively.
Abstract:It is common for people to create different types of charts to explore a multi-dimensional dataset (table). However, to build an intelligent assistant that recommends commonly composed charts, the fundamental problems of "multi-dialect" unification, imbalanced data and open vocabulary exist. In this paper, we propose Table2Charts framework which learns common patterns from a large corpus of (table, charts) pairs. Based on deep Q-learning with copying mechanism and heuristic searching, Table2Charts does table-to-sequence generation, where each sequence follows a chart template. On a large spreadsheet corpus with 196k tables and 306k charts, we show that Table2Charts could learn a shared representation of table fields so that tasks on different chart types could mutually enhance each other. Table2Charts has >0.61 recall at top-3 and >0.49 recall at top-1 for both single-type and multi-type chart recommendation tasks.