Abstract:In this work, we present LLM Gesticulator, an LLM-based audio-driven co-speech gesture generation framework that synthesizes full-body animations that are rhythmically aligned with the input audio while exhibiting natural movements and editability. Compared to previous work, our model demonstrates substantial scalability. As the size of the backbone LLM model increases, our framework shows proportional improvements in evaluation metrics (a.k.a. scaling law). Our method also exhibits strong controllability where the content, style of the generated gestures can be controlled by text prompt. To the best of our knowledge, LLM gesticulator is the first work that use LLM on the co-speech generation task. Evaluation with existing objective metrics and user studies indicate that our framework outperforms prior works.
Abstract:In this paper, we present our solution for the Second Multimodal Emotion Recognition Challenge Track 1(MER2024-SEMI). To enhance the accuracy and generalization performance of emotion recognition, we propose several methods for Multimodal Emotion Recognition. Firstly, we introduce EmoVCLIP, a model fine-tuned based on CLIP using vision-language prompt learning, designed for video-based emotion recognition tasks. By leveraging prompt learning on CLIP, EmoVCLIP improves the performance of pre-trained CLIP on emotional videos. Additionally, to address the issue of modality dependence in multimodal fusion, we employ modality dropout for robust information fusion. Furthermore, to aid Baichuan in better extracting emotional information, we suggest using GPT-4 as the prompt for Baichuan. Lastly, we utilize a self-training strategy to leverage unlabeled videos. In this process, we use unlabeled videos with high-confidence pseudo-labels generated by our model and incorporate them into the training set. Experimental results demonstrate that our model ranks 1st in the MER2024-SEMI track, achieving an accuracy of 90.15% on the test set.
Abstract:Recent advances in Large Language Models (LLMs) have presented new opportunities for integrating Artificial General Intelligence (AGI) into biological research and education. This study evaluated the capabilities of leading LLMs, including GPT-4, GPT-3.5, PaLM2, Claude2, and SenseNova, in answering conceptual biology questions. The models were tested on a 108-question multiple-choice exam covering biology topics in molecular biology, biological techniques, metabolic engineering, and synthetic biology. Among the models, GPT-4 achieved the highest average score of 90 and demonstrated the greatest consistency across trials with different prompts. The results indicated GPT-4's proficiency in logical reasoning and its potential to aid biology research through capabilities like data analysis, hypothesis generation, and knowledge integration. However, further development and validation are still required before the promise of LLMs in accelerating biological discovery can be realized.