Abstract:Assume $k$ candidates need to be selected. The candidates appear over time. Each time one appears, it must be immediately selected or rejected -- a decision that is made by a group of individuals through voting. Assume the voters use approval ballots, i.e., for each candidate they only specify whether they consider it acceptable or not. This setting can be seen as a voting variant of choosing $k$ secretaries. Our contribution is twofold. (1) We assess to what extent the committees that are computed online can proportionally represent the voters. (2) If a prior probability over candidate approvals is available, we show how to compute committees with maximal expected score.
Abstract:We study the setting of committee elections, where a group of individuals needs to collectively select a given size subset of available objects. This model is relevant for a number of real-life scenarios including political elections, participatory budgeting, and facility-location. We focus on the core -- the classic notion of proportionality, stability and fairness. We show that for a number of restricted domains including voter-interval, candidate-interval, single-peaked, and single-crossing preferences the core is non-empty and can be found in polynomial time. We show that the core might be empty for strict top-monotonic preferences, yet we introduce a relaxation of this class, which guarantees non-emptiness of the core. Our algorithms work both in the randomized and discrete models. We also show that the classic known proportional rules do not return committees from the core even for the most restrictive domains among those we consider (in particular for 1D-Euclidean preferences). We additionally prove a number of structural results that give better insights into the nature of some of the restricted domains, and which in particular give a better intuitive understanding of the class of top-monotonic preferences.
Abstract:We study the problem of bribery in multiwinner elections, for the case where the voters cast approval ballots (i.e., sets of candidates they approve) and the bribery actions are limited to: adding an approval to a vote, deleting an approval from a vote, or moving an approval within a vote from one candidate to the other. We consider a number of approval-based multiwinner rules (AV, SAV, GAV, RAV, approval-based Chamberlin--Courant, and PAV). We find the landscape of complexity results quite rich, going from polynomial-time algorithms through NP-hardness with constant-factor approximations, to outright inapproximability. Moreover, in general, our problems tend to be easier when we limit out bribery actions on increasing the number of approvals of the candidate that we want to be in a winning committee (i.e., adding approvals only for this preferred candidate, or moving approvals only to him or her). We also study parameterized complexity of our problems, with a focus on parameterizations by the numbers of voters or candidates.
Abstract:To choose a suitable multi-winner rule, i.e., a voting rule for selecting a subset of $k$ alternatives based on a collection of preferences, is a hard and ambiguous task. Depending on the context, it varies widely what constitutes the choice of an "optimal" subset. In this paper, we offer a new perspective to measure the quality of such subsets and---consequently---multi-winner rules. We provide a quantitative analysis using methods from the theory of approximation algorithms and estimate how well multi-winner rules approximate two extreme objectives: diversity as captured by the (Approval) Chamberlin--Courant rule and individual excellence as captured by Multi-winner Approval Voting. With both theoretical and experimental methods we classify multi-winner rules in terms of their quantitative alignment with these two opposing objectives.
Abstract:In this paper we extend the principle of proportional representation to rankings. We consider the setting where alternatives need to be ranked based on approval preferences. In this setting, proportional representation requires that cohesive groups of voters are represented proportionally in each initial segment of the ranking. Proportional rankings are desirable in situations where initial segments of different lengths may be relevant, e.g., hiring decisions (if it is unclear how many positions are to be filled), the presentation of competing proposals on a liquid democracy platform (if it is unclear how many proposals participants are taking into consideration), or recommender systems (if a ranking has to accommodate different user types). We study the proportional representation provided by several ranking methods and prove theoretical guarantees. Furthermore, we experimentally evaluate these methods and present preliminary evidence as to which methods are most suitable for producing proportional rankings.
Abstract:We establish a link between multiwinner elections and apportionment problems by showing how approval-based multiwinner election rules can be interpreted as methods of apportionment. We consider several multiwinner rules and observe that they induce apportionment methods that are well-established in the literature on proportional representation. For instance, we show that Proportional Approval Voting induces the D'Hondt method and that Monroe's rule induces the largest reminder method. We also consider properties of apportionment methods and exhibit multiwinner rules that induce apportionment methods satisfying these properties.
Abstract:We consider the following problem: There is a set of items (e.g., movies) and a group of agents (e.g., passengers on a plane); each agent has some intrinsic utility for each of the items. Our goal is to pick a set of $K$ items that maximize the total derived utility of all the agents (i.e., in our example we are to pick $K$ movies that we put on the plane's entertainment system). However, the actual utility that an agent derives from a given item is only a fraction of its intrinsic one, and this fraction depends on how the agent ranks the item among the chosen, available, ones. We provide a formal specification of the model and provide concrete examples and settings where it is applicable. We show that the problem is hard in general, but we show a number of tractability results for its natural special cases.
Abstract:We consider the following problem in which a given number of items has to be chosen from a predefined set. Each item is described by a vector of attributes and for each attribute there is a desired distribution that the selected set should have. We look for a set that fits as much as possible the desired distributions on all attributes. Examples of applications include choosing members of a representative committee, where candidates are described by attributes such as sex, age and profession, and where we look for a committee that for each attribute offers a certain representation, i.e., a single committee that contains a certain number of young and old people, certain number of men and women, certain number of people with different professions, etc. With a single attribute the problem collapses to the apportionment problem for party-list proportional representation systems (in such case the value of the single attribute would be a political affiliation of a candidate). We study the properties of the associated subset selection rules, as well as their computation complexity.
Abstract:We study the complexity of (approximate) winner determination under the Monroe and Chamberlin--Courant multiwinner voting rules, which determine the set of representatives by optimizing the total (dis)satisfaction of the voters with their representatives. The total (dis)satisfaction is calculated either as the sum of individual (dis)satisfactions (the utilitarian case) or as the (dis)satisfaction of the worst off voter (the egalitarian case). We provide good approximation algorithms for the satisfaction-based utilitarian versions of the Monroe and Chamberlin--Courant rules, and inapproximability results for the dissatisfaction-based utilitarian versions of them and also for all egalitarian cases. Our algorithms are applicable and particularly appealing when voters submit truncated ballots. We provide experimental evaluation of the algorithms both on real-life preference-aggregation data and on synthetic data. These experiments show that our simple and fast algorithms can in many cases find near-perfect solutions.