Abstract:Attention-Aware Social Choice tackles the fundamental conflict faced by some agent communities between their desire to include all members in the decision making processes and the limited time and attention that are at the disposal of the community members. Here, we investigate a combination of two techniques for attention-aware social choice, namely Natural Language Processing (NLP) and Sampling. Essentially, we propose a system in which each governance proposal to change the status quo is first sent to a trained NLP model that estimates the probability that the proposal would pass if all community members directly vote on it; then, based on such an estimation, a population sample of a certain size is being selected and the proposal is decided upon by taking the sample majority. We develop several concrete algorithms following the scheme described above and evaluate them using various data, including such from several Decentralized Autonomous Organizations (DAOs).
Abstract:While the physical lives of many of us are in democracies (one person, one vote - e.g., the EU and the US), our digital lives are mostly in autocracies (one person, all votes - e.g., Facebook). Cryptocurrencies promise liberation but stop short, at plutocracy (one coin, one vote). What would it take for us to live our digital lives in a digital democracy? This paper offers a vision, a theoretical framework, and an architecture for a grassroots network of autonomous, people-owned, people-operated, and people-governed digital communities, namely a grassroots democratic metaverse. It also charts a roadmap towards realizing it, and identifies unexplored territory for further research.
Abstract:Participatory Budgeting (PB) is a process in which voters decide how to allocate a common budget; most commonly it is done by ordinary people -- in particular, residents of some municipality -- to decide on a fraction of the municipal budget. From a social choice perspective, existing research on PB focuses almost exclusively on designing computationally-efficient aggregation methods that satisfy certain axiomatic properties deemed "desirable" by the research community. Our work complements this line of research through a user study (N = 215) involving several experiments aimed at identifying what potential voters (i.e., non-experts) deem fair or desirable in simple PB settings. Our results show that some modern PB aggregation techniques greatly differ from users' expectations, while other, more standard approaches, provide more aligned results. We also identify a few possible discrepancies between what non-experts consider \say{desirable} and how they perceive the notion of "fairness" in the PB context. Taken jointly, our results can be used to help the research community identify appropriate PB aggregation methods to use in practice.
Abstract:We study the problem of bribery in multiwinner elections, for the case where the voters cast approval ballots (i.e., sets of candidates they approve) and the bribery actions are limited to: adding an approval to a vote, deleting an approval from a vote, or moving an approval within a vote from one candidate to the other. We consider a number of approval-based multiwinner rules (AV, SAV, GAV, RAV, approval-based Chamberlin--Courant, and PAV). We find the landscape of complexity results quite rich, going from polynomial-time algorithms through NP-hardness with constant-factor approximations, to outright inapproximability. Moreover, in general, our problems tend to be easier when we limit out bribery actions on increasing the number of approvals of the candidate that we want to be in a winning committee (i.e., adding approvals only for this preferred candidate, or moving approvals only to him or her). We also study parameterized complexity of our problems, with a focus on parameterizations by the numbers of voters or candidates.
Abstract:We study a generalization of the standard approval-based model of participatory budgeting (PB), in which voters are providing approval ballots over a set of predefined projects and -- in addition to a global budget limit, there are several groupings of the projects, each group with its own budget limit. We study the computational complexity of identifying project bundles that maximize voter satisfaction while respecting all budget limits. We show that the problem is generally intractable and describe efficient exact algorithms for several special cases, including instances with only few groups and instances where the group structure is close to be hierarchical, as well as efficient approximation algorithms. Our results could allow, e.g., municipalities to hold richer PB processes that are thematically and geographically inclusive.
Abstract:Given an election, a preferred candidate p, and a budget, the SHIFT BRIBERY problem asks whether p can win the election after shifting p higher in some voters' preference orders. Of course, shifting comes at a price (depending on the voter and on the extent of the shift) and one must not exceed the given budget. We study the (parameterized) computational complexity of S HIFT BRIBERY for multiwinner voting rules where winning the election means to be part of some winning committee. We focus on the well-established SNTV, Bloc, k-Borda, and Chamberlin-Courant rules, as well as on approximate variants of the Chamberlin-Courant rule, since the original rule is NP-hard to compute. We show that SHIFT BRIBERY tends to be harder in the multiwinner setting than in the single-winner one by showing settings where SHIFT BRIBERY is easy in the single-winner cases, but is hard (and hard to approximate) in the multiwinner ones. Moreover, we show that the non-monotonicity of those rules which are based on approximation algorithms for the Chamberlin-Courant rule sometimes affects the complexity of SHIFT BRIBERY.
Abstract:We define and study a general framework for approval-based budgeting methods and compare certain methods within this framework by their axiomatic and computational properties. Furthermore, we visualize their behavior on certain Euclidean distributions and analyze them experimentally.
Abstract:We study the computational complexity of candidate control in elections with few voters, that is, we consider the parameterized complexity of candidate control in elections with respect to the number of voters as a parameter. We consider both the standard scenario of adding and deleting candidates, where one asks whether a given candidate can become a winner (or, in the destructive case, can be precluded from winning) by adding or deleting few candidates, as well as a combinatorial scenario where adding/deleting a candidate automatically means adding or deleting a whole group of candidates. Considering several fundamental voting rules, our results show that the parameterized complexity of candidate control, with the number of voters as the parameter, is much more varied than in the setting with many voters.
Abstract:We consider elections where the voters come one at a time, in a streaming fashion, and devise space-efficient algorithms which identify an approximate winning committee with respect to common multiwinner proportional representation voting rules; specifically, we consider the Approval-based and the Borda-based variants of both the Chamberlin-- ourant rule and the Monroe rule. We complement our algorithms with lower bounds. Somewhat surprisingly, our results imply that, using space which does not depend on the number of voters it is possible to efficiently identify an approximate representative committee of fixed size over vote streams with huge number of voters.